Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries

Xianyong Wu, Zelang Jian, Zhifei Li, Xiulei Ji *

Department of Chemistry, Oregon State University, Corvallis, OR 97331, United States

A R T I C L E I N F O

Article history:
Received 20 January 2017
Received in revised form 15 February 2017
Accepted 15 February 2017
Available online 17 February 2017

Keywords:
Potassium-ion battery
Cathode
Prussian blue
Prussian white

A B S T R A C T

We prepared Prussian white analogues—KxMFe(CN)y·mH2O (M = Fe, Co, Ni, or Cu). These compounds are investigated as cathode materials for potassium-ion batteries with a non-aqueous electrolyte. Each of these materials exhibits different K-ion storage properties with reversible capacity values ranging from 35 to 110 mAh g−1 at high potentials above 3.2 V vs. K⁺/K. Among them, Fe-Prussian white, K1.58Fe1.06Fe(CN)6·2.1H2O, exhibits the highest reversible capacity of 110 mAh g−1 and stable cycling performance in contrast to rapid capacity fading of other analogues. Our results demonstrate a remarkable potential of this family of cathode materials for the emerging potassium-ion batteries.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Batteries employing inexpensive Earth-abundant elements have recently received considerable attention [1,2]. Shadowed by the worldwide effort on sodium-ion batteries (NIBs), potassium-ion batteries (KIBs) have received little attention, which is seemingly due to the higher mass of K-ion as well as its large size [3]. However, when considering a full-cell scale, the mass burden of K-ions renders KIBs only 5 to 10% heavier than NIBs if the electrodes of the two types of devices exhibit similar capacity values [3]. Indeed, indiscriminate to all emerging batteries, the highest potentials above 3.2 V vs. K⁺/K. Among them, Fe-Prussian white, K1.58Fe1.06Fe(CN)6·2.1H2O, exhibits the highest reversible capacity of 110 mAh g−1 and stable cycling performance in contrast to rapid capacity fading of other analogues. Our results demonstrate a remarkable potential of this family of cathode materials for the emerging potassium-ion batteries.

The recent interests on KIBs have been stimulated by the progress made on the anode side [4–14]. However, further progress of KIBs faces the hurdle on the cathode side, where there have been very few choices of cathode materials. Eftekhar reported a Prussian blue KIB cathode, KxFe2(CN)y, which exhibited a reversible capacity of ~78 mAh g−1 and impressive cycling life [15]. Cui et al. investigated various Prussian blue analogues as electrodes in KIBs that contain aqueous electrolytes [16, 17]. Recently, a few more cathode candidates were reported, including layered oxides, such as Kx3MnO2 [18] and Kx2Fe2Mn2O2 [19], as well as a couple of organic solids, such as polyethylene-carboxylic dianhydride (PTCDA) [20] and poly(anthraquinonyl sulfide) (PAQS) [21]. Yet, these cathode materials often do not contain sufficient K-ions to extract, which fundamentally limits the choice of anodes. As another issue, the operation potentials of these materials are modest, which on average are at 2.0–2.5 V vs. K⁺/K, thus restricting the energy density of full cell devices. Therefore, it is highly desirable to identify potassium-containing, high-potential cathode materials. Very recently, Xu et al. reported K2V2(PO4)3 as a KIB cathode with a high reaction potential above 3.6 V and a capacity of 54 mAh g−1 [22].

The primary challenge of identifying cathode materials for KIBs might be the much larger radius of K-ion (1.38 Å) vs. Li-ion (0.76 Å) and Na-ion (1.02 Å) [23], which is fortunately not an issue for Prussian blue analogues. In 2016, Zhang et al. reported that a K0.22Fe[Fe(CN)6]0.805·4.01H2O cathode could deliver a reversible capacity of 76.7 mAh g−1 at 3.2 V with capacity retention of 95.4% after 50 cycles [24]. Note that this Prussian blue electrode still does not contain a good stoichiometry of removable K-ions. It is well known that Prussian blue theoretically contains one more extractable K-ion than Prussian blue in the open framework, which renders double capacity during the initial charge of a full cell [25–29]. Most recently, Goodenough et al. reported a Prussian white analogue of Kx3Mn[Fe(CN)6]0.75H2O·0.75H2O as a low cost and high energy potassium-ion cathode, which realized a high capacity of 142 mAh g−1 and a high reaction potential of 3.6 V [25]. This pioneering study indicates the feasibility of utilizing Prussian white analogues as low-cost and high-performing cathode materials for KIBs.

In this communication, we, for the first time, report the performance of several Prussian white analogues as cathode in nonaqueous KIBs—KxMFe(CN)y·mH2O (M = Fe, Co, Ni, or Cu), which were prepared by a simple precipitation method.

2. Experimental

We aim to synthesize four Prussian white analogues: K2FeFe(CN)6, K2CoFe(CN)6, K2NiFe(CN)6, and K2CuFe(CN)6 by a simple precipitation
method. Typically, 0.1 mol L\(^{-1}\) MCl\(_2\) (M = Fe, Co, Ni, and Cu) solution was dropwise added into 0.1 mol L\(^{-1}\) K\(_4\)Fe(CN)\(_6\) solution under stirring. After four hours of reaction, the precipitate was centrifuged, rinsed, and dried in an oven at 80 °C overnight. Due to the presence of structural defects, common in room-temperature precipitation reactions, the actual chemical formula of Prussian white analogues may deviate from the stoichiometry of K\(_2\)MFe(CN)\(_6\), which can be analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES, PerkinElmer 2100 DV) on K, M, and Fe elements. We also conducted thermogravimetric analysis (TGA, SDT Q600) on water content. We determined their formula to be K\(_{1.68}\)Fe\(_{1.09}\)Fe(CN)\(_6\)·2.1H\(_2\)O, K\(_{1.51}\)Ni\(_{0.05}\)Fe(CN)\(_6\)·3.3H\(_2\)O, and K\(_{1.40}\)Co\(_{0.05}\)Fe(CN)\(_6\)·4.5H\(_2\)O, respectively. Interestingly, the content of crystal water in these Prussian white analogues increases along the atomic number: Fe < Co < Ni < Cu. We refer to the four obtained Prussian white samples as FeFe-PW, CoFe-PW, NiFe-PW, and CuFe-PW, respectively. The theoretical capacities of FeFe-PW, CoFe-PW, NiFe-PW, and CuFe-PW are 119.7, 108.2, 70.7, and 59.1 mAh g\(^{-1}\), respectively, based on the content of K-ions in the structures, if we assume that the transition metal redox couples, M\(^{3+}/M^{2+}\) (M = Fe and Co), are active, but Ni\(^{3+}/Ni^{2+}\) and Cu\(^{3+}/Cu^{2+}\) are inactive. It is known that Ni\(^{3+}/Ni^{2+}\) is inactive in both Li and Na analogues of Prussian blue [27,30].

We collected powder X-ray diffraction (XRD) patterns on a Rigaku Ultima IV Diffractometer with Cu Ka irradiation (\(\lambda = 1.5406 \) Å). The electrodes of Prussian white materials were composed of 70 wt% of Prussian white active mass, 20 wt% Super P, and 10 wt% polyvinylidene fluoride (PVdF). The electrode slurry was cast on Al foil, where the typical loading of active mass is ~2 mg/cm\(^2\). Coin cells (2032) were assembled in an argon-filled glovebox, which contains Prussian white working electrode, potassium metal counter/reference electrode, glass fiber membrane as a separator, and an electrolyte of 0.8 mol L\(^{-1}\) KPF\(_6\) in propylene carbonate (PC) with 4 wt% fluoroethylene carbonate (FEC) additive. Cyclic voltammetry (CV) tests were performed on a VMP-3 multi-channel workstation at a scan rate of 0.1 mV s\(^{-1}\). The voltage range for electrochemical tests is 3.3–4.5 V, in Na-ion batteries [29]. It is noteworthy that the discharge potentials of 3.9 and 3.2 V of K\(_x\)FeFe-PW are higher than those of Na\(_x\)FeFe-PW, 3.3 and 3.0 V, in Na-ion batteries [29]. This may have to do with the facts that the standard potential of K\(^+/K\) is ~0.3 V lower than that of Na\(^+/Na\) in PC solvent [31] and that the energy may be more negative when K-ions are incorporated into the FeFe(PCN)\(_6\) framework [32]. The first-cycle charge/discharge capacity of 105.1/110.5 mAh g\(^{-1}\) for FeFe-PW gives rise to an initial coulombic efficiency of 105.1%, which is likely due to the mixed oxidation states of Fe (II) and Fe (III) of the iron site coordinated to nitrogen end of cyanide, thus resulting in a shorter low-potential plateau during the first depotassiation [29]. However, the following discharge (potassiation) may form a Prussian white structure with more K-ions inserted than its pristine form, which would give rise to a coulombic efficiency more than 100%. In the third cycle, the discharge capacity is still of 105 mAh g\(^{-1}\), indicating good K-insertion reversibility of FeFe-PW. Importantly, the initial discharge capacity of FeFe-PW compound is as high as 110.5 mAh g\(^{-1}\), which corresponds to 92% utilization of its theoretical capacity of 119.7 mAh g\(^{-1}\) when assuming intercalation/deintercalation of 1.68 potassium ions. If more potassium ions are present in the FeFe-PW lattice and all crystal water molecules can be eliminated, higher K-storage capacity can be expected.

![Fig. 1. (a) XRD patterns of the four Prussian white analogues in comparison with the standard diffraction pattern of K\(_2\)CoFe(CN)\(_6\) (JCPDS No. 31-1000), (b) A schematic of the crystal structure of K\(_2\)MFe(CN)\(_6\), M = Fe, Co, Ni, and Cu.](attachment:image.png)
Fig. 2b–d shows the charge/discharge potential profiles of CoFe-PW, NiFe-PW, and CuFe-PW electrodes, respectively. Interestingly, CoFe-PW demonstrates a low discharge capacity of only ~60 mAh g\(^{-1}\), which corresponds to a one-electron transfer mechanism (Fig. 2b). However, the sodium analogue of Na\(_2\)CoFe(CN)\(_6\) can deliver a complete 2-Na capacity of ~150 mAh g\(^{-1}\) [33]. We hypothesize that the disparity between Na-CoFe-PW and K-CoFe-PW may be resulted from the fact that K-ions constitute a more stable structure with more negative energy with strong bonding between K-ions and cyanide ions, where the electron density might be more attracted toward K-ions. Thus, the inductive effect would cause the redox potential of Co(III)/Co(II) to rise in this structure, where below the upper cutoff potential, Co(II) cannot be oxidized in galvanostatic depotassiation [34]. The very low first-cycle coulombic efficiency of K-CoFe-PW (~56%) may involve the decomposition of crystal water, as suggested in recent NIB studies [27–29].

For NiFe-PW, it presents a very flat charge/discharge plateau at ~4.0/3.6 V, suggesting a two-phase reaction mechanism (Fig. 2c) [29]. Its reversible K-insertion capacity is 63.4 mAh g\(^{-1}\), which is very close to the value in an aqueous potassium electrolyte [16]. The discharge capacity remained constant at ~63.4 mAh g\(^{-1}\) at the third cycle, implying a reversible K-insertion process. Fig. 2d demonstrates the charge/discharge profiles of CuFe-PW electrode, where the reversible specific capacity of 35.2 mAh g\(^{-1}\) is the lowest among all four Prussian white materials. This may relate to the fact that it has the highest number of crystal water molecules (4.5H\(_2\)O).

These Prussian white analogues exhibit vastly different cycling performance at a current density of 20 mA g\(^{-1}\) albeit they were prepared and treated at the same conditions. As Fig. 3a shows, CoFe-PW suffer rapid capacity fading, where only after 15 cycles, its capacity values fade to 64% of the original value. NiFe-PW and CuFe-PW exhibit relatively stable cycling, where their capacity retention after 15 cycles is 93%, and 83%, respectively. Interestingly, the cycling life of FeFe-PW electrode is impressive. After 100 cycles, its capacity decreases from 110.5 to 90.4 mAh g\(^{-1}\), corresponding to a high capacity retention of 81% (Fig. 3b). The cycling difference of these compounds may be associated with many factors such as water content, crystal defects, and crystal integrity; water decomposition, structural collapse, and metal ions dissolution may occur during charge/discharge process [27–29].

4. Conclusions

We have prepared four Prussian white analogues and investigated their cathode performance for KIBs in a non-aqueous electrolyte, which provides a good picture of these materials for a general trend.
Among these materials, FeFe-PW exhibits a high reversible capacity of 110 mAh g\(^{-1}\) with two plateaus at high potentials of 3.9 and 3.2 V vs. K\(^+\)/K, and relatively stable cycling performance. Note that the capacity values of these materials would be underestimated due to the existence of crystal water and its associated decomposition. In further studies, with crystal water removed, not only the capacity value but also the cycling life as well as the coulombic efficiency values of these materials are expected to be greatly improved. Prepared by a straightforward aqueous precipitation method at room temperature, Prussian white analogue is low-cost and high performance non-aqueous KIB cathode materials.

Acknowledgements

X.J. is thankful for the financial supports from National Science Foundation Award No. 1551693. We thank Professor Douglas A. Keszler for the XRD measurements. We appreciate Professor May Nyman for the ICP-OES studies. We are grateful to Ms. Gloria M. Ambrowiak and Ms. Shannon B. Andrews for their kind help on the ICP-OES studies.

References
