
ERHU WEI, CUIJUN DONG, YALI YANG, and SHENQUAN TANG
School of Geodesy and Geomatics, Wuhan University, Wuhan, China

JIANDONG LIU
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

GUANGYU GONG
Army of Chinese People’s Liberation, Urumchi, China

ZHIHONG DENG
Beijing Institute of Technology, Beijing, China

Received December 2015; Revised August 2016

ABSTRACT: The robustness of the Sandia Inertial Terrain-Aided Navigation (SITAN) algorithm has a pivotal influence on underwater vehicles’ Gravity-Aided Inertial Navigation Systems (GAINS). An abrupt glitch of the accuracy of the GAINS will evolve into a disaster when vehicles pass through areas of smooth gravity. In order to resolve vulnerability issues of initial error and linearization error, we propose the Correlation SITAN algorithm with Weight-Reducing Iteration Technique (CSITAN + WRIT), in which the correlation process equals Terrain Contour Matching (TERCOM). The CSITAN algorithm is a Multipoint-based Extended Kalman Filtering (MEKF) method, which can work in real time. First, we need to derive the state equation and observation equation of the Multipoint-based SITAN algorithm based on the principle of the traditional SITAN algorithm. Then the accuracy of the state prediction can be improved, and the linearization error can be reduced by the correlation method based on TERCOM. Finally, the WRIT is utilized to reduce the possible influence of gross errors existing in the results of the MEKF and to extract a value with higher precision. The experimental results show that CSITAN + WRIT can achieve better accuracy and higher success rate of matching and can improve the possibilities of the occurrence of large matching errors than traditional SITAN methods in areas with smooth gravity. Copyright © 2017 Institute of Navigation

INTRODUCTION

The Gravity-Aided Inertial Navigation System (GAINS) is being widely used in underwater vehicles to bind the inherent errors of Inertial Navigation Systems (INS) that accumulate over time and could even lead to divergence of the vehicles’ position [1]. The vehicles’ state is updated by comparing the measurements of gravity information acquired by the gravity sensor and the values extracted from the gravity reference map based on INS information [2–5]. The structure of GAINS is shown in Figure 1.

The matching algorithms of GAINS have a high impact on the accuracy and efficiency of localization; those commonly used matching algorithms include Terrain Contour Matching (TERCOM) algorithm, iterated closest contour point (ICCP) algorithm, Sandia Inertial Terrain-Aided Navigation (SITAN), and so forth. TERCOM and ICCP are both maximum correlation and extremum judgment-based matching algorithms, which have the shortcoming of weak real-time performance. SITAN is a Kalman filtering (KF)-based matching algorithm, which has the ability to work in real time but is vulnerable to initial error and linearization error and could easily become diverged or mismatched [6].

In order to resolve these problems, [7] proposed an AFTI/SITAN algorithm that can determine the position of aircraft within a 926-m (0.5 nmi) CEP circle and estimate its position continuously at the
Experimental results have verified the feasibility and robustness of CSITAN + WRIT.

The principle of the traditional SITAN algorithm and CSITAN + WRIT is introduced in Section 2 in detail. In Section 3, three trajectories with different roughness of gravity anomaly are selected to implement experiments to verify the feasibility and robustness of CSITAN + WRIT. The analyses of the results of the experiments are also given. Finally, conclusions and further discussions are provided based on the experimental results.

PRINCIPLE OF THE TRADITIONAL SITAN ALGORITHM AND CSITAN + WRIT

Principle of SITAN

The SITAN is an Extended Kalman Filter (EKF)-based matching algorithm, which utilizes the recursive optimal estimation method to update the states of underwater vehicles [14, 15]. The construction of the state equation and observation equation of SITAN is as follows:

1. **The State Equation**

 In this paper, six variables were selected to establish the state vector, which are as follows:

 \[
 X_k = [\dot{x}_{k-1} \phi_{k-1} V_{k-1} \varphi_{k-1} a_{k-1} a_{\theta_{k-1}}]^T
 \]

 The six variables represent the position, velocity, and acceleration in direction of longitude and latitude, respectively [16]. Thus, the state transition matrix and system noise matrix shall be established according to the state vector.

 The state transition matrix \(\Phi_{k|k-1} \) and the system noise matrix \(w_{k-1} \) are as follows:

 \[
 \Phi_{k|k-1} = \begin{bmatrix}
 1 & 0 & T & 0 & T^2/2 & 0 \\
 0 & 1 & 0 & T & 0 & T^2/2 \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}_{6 \times 6}
 \]

 \[
 w_{k-1} = \begin{bmatrix}
 w_{x_k} \\
 w_{\phi} \\
 w_{V_k} \\
 w_{\varphi} \\
 w_{a_k} \\
 w_{a\theta}
 \end{bmatrix}_{6 \times 1}
 \]

2. **The Observation Equation**

 The difference between the actual measurement of the gravity anomaly and the value extracted from
the gravity anomaly map with INS information is regarded as the observation value [17, 18].

The actual measurement of the gravity anomaly:

\[g_m = g_r(\lambda, \varphi) + \gamma_r \]

(7)

In Equation (7), \(g_m \) represents the measurement of the gravity anomaly, \(\lambda, \varphi \) is the true position of vehicles, \(g_r(\lambda, \varphi) \) is the true value of the gravity anomaly that corresponds to true position, and \(\gamma_r \) is the measurement noise.

The value being extracted from the gravity anomaly map with INS information is

\[g_e = g_e(\lambda_{ins}, \varphi_{ins}) = g_r(\lambda + \delta\lambda, \varphi + \delta\varphi) + \gamma_m \]

(8)

In formula (8), \(g_e \) represents the extracted value of the gravity anomaly map, \(\delta\lambda \) and \(\delta\varphi \) are the errors in the vehicle’s position, \(g_r(x + \delta x, y + \delta y) \) is the true value of the gravity anomaly that corresponds to the position assigned by INS, and \(\gamma_m \) is the noise of measurement and quantization in digital map making.

Then the observation equation of SITAN can be obtained in the following derivation process:

\[
Z = g_m - g_e = g_r(\lambda, \varphi) + \gamma_r - g_e(\lambda + \delta\lambda, \varphi + \delta\varphi) \\
= g_r(\lambda, \varphi) + \gamma_r - g_r(\lambda, \varphi) - \delta g_r(\lambda, \varphi) \frac{\partial}{\partial \lambda} \delta\lambda - \frac{\partial g_r(\lambda, \varphi)}{\partial \varphi} \delta\varphi - \gamma_m \\
= -h_x \delta\lambda - h_y \delta\varphi + \gamma_r - \gamma_m - \gamma_l
\]

(9)

The first-order Taylor series expansion method is utilized in the above process to simplify the observation equation into a linearized equation, and \(\gamma_l \) represents the linearization error. The final simplified observation equation is obtained in the following form:

\[Z_k = H_k X_k + V(k) \]

(10)

In formula (10), \(V(k) = \gamma_m - \gamma_r - \gamma_l \) represents the error terms, and the coefficient matrix is shown as follows:

\[
H_k = \begin{bmatrix}
-h_x, & -h_y, & -h_x(k-1) \cdot T, & -h_y(k-1) \cdot T, & \frac{-h_x(k-1) T^2}{2}, & \frac{-h_y(k-1) T^2}{2}
\end{bmatrix}_{1 \times 6}
\]

\(-h_x(k-1), -h_y(k-1)\) represent the slopes of the waypoint in \((k-1)\)-th moment in the directions of east and north, and we derive the coefficient matrix based on the motion equation because \(\delta\lambda, \delta\varphi\) is related to velocity and acceleration [19].

The coefficients of the observation equation are obtained by utilizing the nine-point fitting method to linearize the local background field. Its principle is introduced in the following section.

The Nine-Point Fitting Method

There are three commonly used linearization methods, including the first-order Taylor expansion method, nine-point fitting method, and whole plane fitting method. While the first one requires less time with low precision, the last one has high precision but is time-consuming [20]. Thus, we choose the nine-point fitting method to linearize the local background field. The analytical model is shown in Figure 2.

The interval between two adjacent points is \(1.5\delta\varphi\) or \(1.5\delta\lambda\) in the direction of latitude or longitude, respectively. Then calculate the correlated parameters with \(P_5\) taken as the center point of the fitting region. The calculation formulas are shown as follows:

\[
g = \frac{1}{9} \sum_{i=1}^{9} g(k_{ix}, k_{iy})
\]

\[
h_x = \frac{g_1 + g_6 + g_9 - (g_1 + g_4 + g_7)}{6 Md}
\]

\[
h_y = \frac{g_2 + g_5 + g_8 - (g_1 + g_2 + g_3)}{6 Nd}
\]

In this formula, \(g_1, g_2..., g_9\) is the gravity anomaly at nine points, \(Md = 1.5\delta\varphi\), \(Nd = 1.5\delta\lambda\).

The Principle of CSITAN + WRIT

The Procedure of CSITAN + WRIT

CSITAN + WRIT is actually a multipoint-based recursive optimal estimation method, which has the advantage of working in real time. It is divided into three steps. The first step is to derive the state equation and observation equation of the
second step is to integrate the correlation method into MEKF to improve the reliability and accuracy of the state prediction. Finally, the weight-reducing iteration technique is utilized to reduce the possible influence of gross errors existing in the results of the MEKF and to extract a value with higher precision. The flow chart of CSITAN + WRIT is shown in Figure 3:

$X'(k|k-1)$ represents the states being processed by correlation function; $X'(k|k)$ represents the states being corrected by actual measurements; Δ represents the differences between the predicted states and the states being processed by correlation function; and τ is the threshold value.

The procedure of CSITAN + WRIT can be briefly described as follows:

Step I: Predict the state of point sequence of the next moment based on the current state of point sequence.

Step II: Utilize the multipoint correlation method to renew the predicted states of point sequence. This step is taken under the assumption that an inaccurate state equation could bring a large deviation to the state prediction, just like there are large gross errors that exist. If this happens, the state prediction would greatly deviate from the real positions, which theoretically exist. The potential gross errors can be eliminated after the correlation process to make it closer to the real positions that exist. Because the coefficients of the observation equation were obtained through the linearization of local gravity background, a more accurate state prediction of position brings more accurate linearized coefficients.

Step III: Check the differences between the states of point sequence before and after the correlation process. Accept the processed states if the differences exceed the threshold. Because there will be a significant correction to the state prediction after the correlation process if gross errors do exist, the threshold value
is two times the largest mean square error of positions in the state prediction.

Step IV: Correct the states of point sequence with actual measured gravity anomalies and store each of the results for each point.

Step V: Utilize the weight-reducing iteration technique to reduce the possible influence of gross errors and extract a final result for each point position. All the waypoints, except a few at the beginning and the end of the trajectory, will be processed for \(n \) times in the course of recursion. Thus, we can use the duplicate position information of one point to extract a value with higher precision.

Some technical details in CSITAN + WRIT will be introduced later in this section.

The Establishment of State Equation and Observation Equation

The establishment of the state equation and observation equation of CSITAN + WRIT has the same principle as that of the traditional SITAN algorithm except that it is a multipoint-based Recursive Optimal Estimation [9, 21].

1. **The Establishment of State Equation**

We select the positions of 10 waypoints, plus the velocities and accelerations of the last point in the point sequence to establish the state vector, which are as follows:

\[
X_{k-1} = [\lambda_{k-1} \varphi_{k-1} \lambda_k \varphi_k \ldots \\
\lambda_{k+8} \varphi_{k+8}]^{T}
\]

\[
\dot{X}_{k-1} = [V_{x_{k-1}} V_{y_{k-1}} \dot{V}_{x_{k-1}} \dot{V}_{y_{k-1}} a_{x_{k-1}} a_{y_{k-1}}]^{T} 24 \times 1
\]

In the state vector, \([\lambda_{k-1} \varphi_{k-1} \lambda_k \varphi_k \ldots \lambda_{k+8} \varphi_{k+8}]^{T}\) are the positions of ten consecutive points in the navigation path and \([V_{x_{k-1}} V_{y_{k-1}} \dot{V}_{x_{k-1}} \dot{V}_{y_{k-1}} a_{x_{k-1}} a_{y_{k-1}}]^{T}\) are the velocities and accelerations of the last waypoint in the point sequence.

The state vector updates one point each time; thus, the state transition matrix \(\Phi_{k|k-1}\) can be established as follows:

\[
\Phi_{k|k-1} = \begin{bmatrix}
A_{18 \times 20} & 0_{18 \times 4} \\
0_{6 \times 6} & B_{6 \times 6}
\end{bmatrix} 24 \times 24
\]

The concrete form of matrix \(A_{18 \times 20}, B_{6 \times 6}\) can be shown as

\[
A_{18 \times 20} = \\
\begin{bmatrix}
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
B_{6 \times 6} = \\
\begin{bmatrix}
1 & 0 & T & 0 & T^2/2 & 0 & \cdots \\
0 & 1 & 0 & T & 0 & T^2/2 & \cdots \\
0 & 0 & 1 & 0 & T & \cdots & \cdots \\
0 & 0 & 0 & 1 & 0 & \cdots & \cdots \\
0 & 0 & 0 & 0 & 1 & \cdots & \cdots
\end{bmatrix}
\]

The system noise matrix \(w_{k+1}\) can be shown as follows:

\[
w_{k-1} = [w_{x_{k-1}} w_{y_{k-1}} w_{x_{k}} w_{y_{k}} \ldots \\
w_{x_{k-1}} w_{y_{k-1}} w_{x_{k}} w_{y_{k}}]\text{T} 24 \times 1
\]

2. **The Establishment of the Observation Equation of CSITAN + WRIT**

Since the derivation process has the same principle as that of traditional SITAN, here, we deliver the observation equation directly:

\[
Z_k = H_k X_k + V(k) \quad (11)
\]

In formula (11), \(V(k) = \sum_{i=1}^{n} \gamma(i) m - \sum_{i=1}^{n} \gamma(i) - \sum_{i=1}^{n} \gamma(i)\) represents the error terms, which contain the noises of measurement and quantization in the process of digital map making, the measurement noises, and the linearization errors.

The coefficient matrix is shown as follows:

\[
H_k = [-h_{\phi}(k), -h_{\phi}(k), -h_{\phi}(k+1), -h_{\phi}(k+1), \ldots, \\
-h_{\phi}(k+9), -h_{\phi}(k+9), -h_{\phi}(k+8) \cdot T, \\
-h_{\phi}(k+8) \cdot T, -h_{\phi}(k+8)T^2, -h_{\phi}(k+8)T^2/2]_{24 \times 1}
\]

The last four terms in this coefficient matrix have the same meaning as that described in the traditional SITAN algorithm.

The Correlation Method

In this paper, we take the Mean Square Difference (MSD) algorithm, which is typically used in the Terrain Contour Matching (TERCOM) system as the decision method to find the most appropriate match result [22, 23].
The calculation formula of MSD algorithm is shown below:

\[J_{MSD}(\Delta e, \Delta n) = \frac{1}{n} \sum_{i=1}^{n} [g_r(i) - g_m(i)]^2 \]

(12)

In formula (12), \(g_r(i) \) represents the actual measurements of the gravity anomalies, \(g_m(i) \) represents the extracted values of the gravity anomaly map corresponding to the predicted values \(X_{k+1|k} \), \(n \) is the length of the point sequence, and \(\Delta e \) and \(\Delta n \) are the deviations in the direction of east and north, respectively. Under the condition that \(J_{MSD} \) gets the minimum value, we can obtain the best matched positions in a certain range of area [24, 25].

The Weight-Reducing Iteration Technique

In the course from \(X_k \) to \(X_{k+n-1} \), the position parameters \(\lambda_{k+n-1} \) and \(\varphi_{k+n-1} \) have appeared for \(n-1 \) times at most (\(n \) is the length of the point sequence in the process of filtering), and the process is shown in Figure 4.

From Figure 4, we can see that the position of this waypoint \(\lambda_{k+n-1} \) and \(\varphi_{k+n-1} \) has been matched \(n-1 \) times. This can provide us with some statistical information, and thus, we can utilize the weight-reducing iteration technique to extract a value with higher precision [26, 27].

The principle of the weight-reducing iteration technique is shown in Figure 5:

- \(P_i(k) \) and \(S_i(k) \) represent the weight and its variation coefficient of the \(i \)-th observation in the \(k \)-th time of adjustment. \(\Delta \) represents the differences between the calculations of two adjacent adjustments, and \(\tau \) is the threshold value. In the above process, \(S_i(k) = \frac{V_{\text{mean}}(k)^2}{V_i(k)^2} \) and \(V_{\text{mean}}(k)^2 \) is the average value of \(V_i(k)^2 \) (\(i = 1, 2 \ldots n \)). The weight of observations constantly change in the course of iteration, and observations with larger deviations get smaller variation coefficients. This will gradually raise the effects of observations with relatively higher accuracy. Results can be obtained through the adjustment at each time, except the last one if the differences between the results of two adjacent adjustments are less than the threshold or the time of iteration exceeds the required number of times. The threshold value is selected based on the precision required in the navigation process, and we select 0.12 nmi as the threshold in this paper, which is equal to the random error of the positions assigned by INS.

EXPERIMENTS

Three different trajectories with gravity anomaly roughness values are selected to verify the feasibility and robustness of CSITAN + WRIT. The gravity anomaly data utilized in this paper were downloaded from the website of University of San Diego, who owns the spatial resolution of 1’ \times 1’ (mGal as unit), [28].

Experimental Conditions

We set the same experimental conditions for both the traditional SITAN algorithm and CSITAN + WRIT, and the same INS information was utilized for the construction of the state transition matrix [29–31]. Figures 6–8 show the roughness distributions of the real trajectories in each case.
Figure 6 shows the roughness values of the gravity anomaly corresponding to the waypoints of the real trajectory in Experiment One. It is obvious that the roughness of the gravity anomaly in the first half of this trajectory is greater than that in the second half.

Figure 7 shows the roughness values of the gravity anomaly corresponding to the waypoints of the real trajectory in Experiment Two. The roughness of the gravity anomaly illustrated in this figure shows that it has relatively large values in almost the whole process when compared with the above two experiments.

More precise statistics of the roughness and simulation conditions of the three experiments are shown in Table 1.

In Table 1, L and B represent the direction of longitude and latitude respectively, and a negative value of speed means heading towards the opposite directions from east and north. The movement modes of the vehicles were simplified into linear motion in the experiments, and \((0.12 + 0.06)\) nmi in the term of random error means that the INS assigned trajectories and the real trajectories have 0.12 nmi and 0.06 nmi of random errors, respectively. The trajectories in Experiment Two have relatively larger linear errors in the direction of latitude since it has larger roughness along its path.

Experimental Results

Experiment One

(1) Experimental Result of Traditional SITAN Algorithm

Figure 9 shows the matching effect and bias between matched trajectory (blue), real trajectory (black), and INS trajectory (red) when initial bias is \(\delta B = \delta L = 1\) (about 1 nmi). \(\Delta L\) and \(\Delta B\) represent the position bias in the direction of longitude and latitude. Figure 9(a) shows the matching effect, and 9(b) shows the position bias between the real trajectory and matched trajectory. The matched trajectory (blue) portrayed in (a) is relatively close to the real trajectory in the whole process but the occurrence of large matching errors of positions showed the instability of traditional SITAN.

(2) Experimental Result of CSITAN + WRIT

Figure 10 shows the matching effect and the bias between matched trajectory (blue), real trajectory (black), and INS trajectory (red) when initial bias is \(\delta B = \delta L = 1\) (about 1 nmi). \(\Delta L\) and \(\Delta B\) represent the position bias in the direction of longitude and latitude. Figure 10(a) shows the matching effect, and 10(b) shows the position bias between the real trajectory and matched trajectory. The matched trajectory (blue) portrayed in (a) is quite close to the real trajectory in the whole process. Without considering the initial waypoint of this trajectory, the bias in both directions, which is illustrated in (b), shows that the error was less than 0.5 nmi in the majority of this process and without the occurrence of divergence, which indicates that the matching process is rather successful.
Experiment Two

(1) Experimental Result of Traditional SITAN Algorithm

Figure 11 shows the matching effect and bias between matched trajectory (blue), real trajectory (black), and INS trajectory (red) of the underwater vehicle when the initial bias is $\delta B = \delta L = 1'$ (about 1 nmi). ΔL and ΔB represent the position bias in the direction of longitude and latitude. Figure 11(a) shows the matching effect, and 11(b) shows the position bias between the real trajectory and matched trajectory. The matched trajectory (blue) portrayed in (a) is close to the real trajectory in the

| Table 1—Statistics of the roughness and simulation conditions of the three experiments |
|---------------------------------|----------------|----------------|----------------|
| Roughness Value of Trajectory | Minimum | Experimental One | Experimental Two | Experimental Three |
| | Maximum | 0.5249 | 2.2928 | 0.4887 |
| | Mean | 3.4689 | 6.1436 | 2.1403 |
| Sampling Interval | / | 3 min | 3 min | 3 min |
| Number of Waypoints | / | 250 | 250 | 250 |
| Initial Position L | 131.2083°E | 133.425°E | 130.625°E |
| Initial Position B | 27.6808°N | 25.0379°N | 27.8873°N |
| Initial Position Error L | 1 nmi | 1 nmi | 1 nmi |
| Initial Position Error B | 1 nmi | 1 nmi | 1 nmi |
| Speed L | 12 nmi/h | –12 nmi/h | 12 nmi/h |
| Speed B | 10 nmi/h | 6 nmi/h | –10 nmi/h |
| Linear Error L | 4 nmi/h | 4 nmi/h | 4 nmi/h |
| Linear Error B | 1/6 nmi/h | 1 nmi/h | 1/6 nmi/h |
| Random Error L | (0.12 + 0.06) nmi | (0.12 + 0.06) nmi | (0.12 + 0.06) nmi |
| Random Error B | (0.12 + 0.06) nmi | (0.12 + 0.06) nmi | (0.12 + 0.06) nmi |
| Error of Gravity Measurements | / | 1 mGal/2 mGal/ | 1 mGal/2 mGal/ | 1 mGal/ |
| | | 3 mGal/4 mGal/ | 3 mGal/4 mGal/ | 2 mGal/ |
| | | 5 mGal/6 mGal | 5 mGal/6 mGal | 3 mGal |

Fig. 9—Matching results of traditional SITAN algorithm. [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

Fig. 10—Matching results of CSITAN + WRIT. [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]
first half of this process. Without considering the initial waypoint of this trajectory, the bias in both directions, which is illustrated in (b), shows that the error was less than 2 nmi in the vast majority of this process and without the occurrence of divergence. The result indicates that the matching is successful.

(2) Experimental Result of CSITAN + WRIT

Figure 12 shows the matching effect and comparison between matched trajectory (blue), real trajectory (black), and INS trajectory (red) of the underwater vehicle when initial bias is $\delta B = \delta L = 1$ (about 1 nmi). ΔL and ΔB represent the position bias in the direction of longitude and latitude. Figure 12 (a) shows the matching effect, and 12(b) shows the position bias between the real trajectory and matched trajectory. The matched trajectory (blue) portrayed in (a) is quite close to the real trajectory in the whole process. Without considering the initial waypoint of this trajectory, the bias in both directions, which is illustrated in (b), shows that the error was less than 0.5 nmi in the vast majority of this process and without the occurrence of divergence. The maximal value of the bias barely reaches 1.5 nmi and 1 nmi in the direction of longitude and latitude, which is much smaller than that occurring in the traditional SITAN algorithm. The result indicates that the matching is successful.

Experiment Three

(1) Experimental Results of Traditional SITAN Algorithm

Figure 13 shows the matching effect and bias between matched trajectory (blue), real trajectory (black), and INS trajectory (red) of the underwater vehicle when initial bias is $\delta B = \delta L = 1$ (about 1 nmi). ΔL and ΔB represent the position bias in the direction of longitude and latitude. Figure 13(a) shows the matching effect, and 13(b) shows the position bias between the real trajectory and matched trajectory. Due to the relatively small roughness values of the gravity anomaly and the accumulation of INS errors, divergence occurred around the 100th point (Figure 8 shows that there is also a decline of the roughness values of the gravity anomaly before the 100th point). The matched trajectory (blue) portrayed in (a) and the
bias illustrated in (b) show that the matching process is unsuccessful.

(2) Experimental Results of CSITAN + WRIT

Figure 14 shows the matching effect and bias between matched trajectory (blue), real trajectory (black), and INS trajectory (red) of the underwater vehicle when initial bias is $\delta B = \delta L = 100$ (about 1 nmi). ΔL and ΔB represent the positions bias in the direction of longitude and latitude. Figure 14(a) shows the matching effect, and 14(b) shows the position bias between the real trajectory and matched trajectory. The matched trajectory (blue) portrayed in (a) and the bias illustrated in (b) show that the matching process is rather successful.

Analysis of the Experimental Results

In this section, we give the statistics of the experimental results to verify the feasibility and robustness of the improved CSITAN + WRIT algorithm, which include the convergence conditions and the root mean square error of matched positions $\Delta S_1, \Delta S_2$ of the traditional SITAN algorithm and CSITAN + WRIT, respectively. Table 2 shows the statistics of the experimental results in the above three experiments.

The number of waypoints is 250 in each experiment, and the length of the point sequence is 10. The number of convergence points does not include the first ten in the trajectory for it takes time to converge. Thus, 240 convergence points means without the occurrence of divergence while * in Table 2 means that the number of convergence points is less than 30. This table shows four things: (1) Traditional SITAN and CSITAN + WRIT both achieved better matching results in Experiment One and Experiment Two when compared with the results in Experiment Three, proving that larger roughness values of gravity anomalies bring better matching results. (2) Traditional SITAN diverges when the error of the gravity measurement is larger than 1 mGal in Experiment One and 2 mGal in Experiment Two with relatively larger roughness values of gravity anomalies. CSITAN + WRIT converged and achieved 2.3647 nmi and 2.9709 nmi of positional accuracy when the error of gravity measurement was 5 mGal in the first two experiments. In Experiment Three with small roughness values for gravity anomalies, even the

![Fig. 14 – Matching results of CSITAN + WRIT. (Color figure can be viewed at wileyonlinelibrary.com and www.ion.org)](image)
CSITAN + WRIT diverged when the error of gravity measurement is larger than 1 mGal with 0.7960 nmi of positional accuracy. (3) CSITAN + WRIT achieved better positional accuracy than traditional SITAN even when converged. (4) With the increase of the error of gravity measurement, the positional accuracy declined. The results of Experiment One are slightly better than those in Experiment Two because the linear error in the direction of latitude in Experiment Two is relatively larger than that in Experiment One.

The experimental results indicated that CSITAN + WRIT improved the accuracy in areas where the roughness values of the gravity anomaly are relatively large and the robustness in areas where the roughness values of the gravity anomaly are relatively small.

CONCLUSION AND DISCUSSION

The experimental results validated the improvement of feasibility and robustness of SITAN. The main scientific results from the experiments are summarized below:

(1) CSITAN + WRIT can achieve better accuracy in areas where the roughness values of the gravity anomaly are relatively large and increase the success rate of matching in areas where the roughness values of the gravity anomaly are relatively small.

(2) A suitable matching area needs to be selected for both traditional SITAN and CSITAN + WRIT before setting sail because the characteristics of the gravity field have a great influence on matching results.

It is important to note that even with improvements from CSITAN + WRIT, there is still some work that needs to be done:

(1) Different numbers of waypoints in the recursive sequence need to be tested in order to find out the optimal length of the recursive sequence.

(2) Carry out experiments under different error conditions to find out the rule between the INS errors and the matching results, thus confirming the maximum tolerance of different errors.

ACKNOWLEDGMENT

This research is funded by the National Natural Science Foundation of China (grant no. 41374012).

REFERENCES

