Short Circuit Synchronous Electric Charge Extraction (SC-SECE) Strategy for Wideband Vibration Energy Harvesting

A Morel, P Gasnier, Y Wanderoild, G Pillonnet
Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LETI, MINATEC, F-38054 Grenoble, France
adrien.morel@cea.fr

A Badel
Univ. Savoie Mont Blanc, SYMME,
F-74000 Annecy, France

Abstract—This paper presents an energy harvesting interface called Short Circuit Synchronous Electric Charge Extraction (SC-SECE), which is an improvement of the SECE interface for highly coupled piezoelectric generators. The SC-SECE interface is based on the control of a short-circuit through two tuning parameters. The first one, ϕ_s, represents the phase between the displacement extrema and the energy harvesting event. The second, $\Delta \phi$, is the angle difference between the beginning and end of the short-circuit phase. The performance of this approach has been compared to other interfaces such as the SECE and the capacitance tuning approach. With the SC-SECE interface, both the power and bandwidth are greatly improved. Experimental measurements have been performed on a highly-coupled piezoelectric harvester ($k_w^2=0.48$) which provides a maximal harvestable power P_{lim} of 6µW under an extremely low vibration amplitude (0.03G). We have been able to harvest more than 50% of this P_{lim} over a large frequency band, from 90Hz to 140Hz. These results demonstrate the excellent potential of this approach for extending the bandwidth of piezoelectric vibration energy harvesters.

Keywords - Vibration Energy Harvesting, Multiphysics modelling, Piezoelectricity, Interface circuit, Short-circuit control, SECE.

I. INTRODUCTION

Over the last two decades, scavenging ambient energy has been investigated as a possible replacement of or complement to batteries in order to make small systems and sensors autonomous [1]. Piezoelectric energy harvesting is particularly interesting in closed and confined environments where temperature gradients and solar light are insufficient to supply a sensor. One of the main building blocks of a piezoelectric energy harvester (PEH) is the interface circuit which has to optimize the extraction of the energy stored in the piezoelectric material. Several synchronous interfaces have been proposed, exhibiting high performances for lowly-coupled piezoelectric harvesters [2-5]. However, for highly-coupled PEH’s, those interfaces are no longer optimal since they overdamp the mechanical resonator [2,6]. In order to match the damping induced by the electrical interface with the mechanical one and enhance the energy extraction process for highly-coupled systems, new approaches have recently been proposed [6,7]. Some of these even induce a tuning of the resonant frequency over a certain frequency range [8,9]. In this paper, we propose a new interface called SC-SECE based on a short-circuit tunable phase which allows optimization of the harvested energy while improving the frequency tuning range compared to other state-of-the-art interfaces. Instead of accumulating the energy in the piezoelectric material during a whole semi-period as in the SECE approach, the harvester is short-circuited during a portion of the vibration semi-period. This then decreases the damping induced by the electrical circuit, and also leads to a change in the electromechanical system resonant frequency. We first propose an analysis of the effects of this short circuit, then we analytically prove that our technique, when associated with highly coupled piezoelectric generators, greatly improves both the harvested energy and the bandwidth compared to the classical SECE interface. Finally, we validate the theoretical analysis through experimental measurements on a highly-coupled PEH.

II. MODELING OF THE SC-SECE INTERFACE

A. PEH modeling

A linear PEH is usually composed of a piezoelectric material deposited on a cantilever beam. Applying Newton’s law to this mechanical system, we can find the dynamic equation of the mass displacement, x. From the fundamental equations for piezoelectric devices, we can then find the differential equation linking the derivative of the displacement, \dot{x}, the piezoelectric voltage, v_p, and the current extracted in the interface circuit, i. Finally, the displacement is considered periodic with a constant amplitude X_m. These three equations are summarized by (1).

\[
\begin{align*}
M \ddot{x} + D \dot{x} + K_{SC} x + \alpha v_p &= -F = -M \ddot{y} \\
i &= \alpha \dot{x} - C_p \psi_p \\
x(t) &= X_m \cos(\theta) = X_m \cos(\omega t)
\end{align*}
\]

where y and F are the ambient displacement and vibration force applied on the whole system, respectively. M is the dynamic mass of the system, K_{SC} the short-circuited stiffness, D the mechanical damping of the structure, C_p the piezoelectric material clamped capacitance and, finally, α corresponds to the piezoelectric coefficient. These equations can be modeled as an equivalent electrical circuit as shown in Fig.1.
B. Expression of the piezoelectric voltage

In order to express the harvested power at every extraction event, we need to solve (1) and find the displacement amplitude, X_m. We first have to find the expression of the piezoelectric voltage v_p. The piezoelectric element is either working in an open-circuit or short-circuit condition (Fig.2), and hence its voltage expression over a time period can be given by (2).

$$v_p(\theta) = \begin{cases} \frac{\alpha}{C_p} \int_{\phi_s}^{\theta} \hat{x}(\theta) \, d\theta, & \forall \theta \in [\phi_s + \Delta \phi - \pi, \phi_s] \\ 0, & \forall \theta \in [\phi_s + \pi, \phi_s + \Delta \phi + \pi] \end{cases}$$

(2)

$\phi_s \in [0, \pi]$ is the phase between the energy harvesting event and the previous displacement extremum, whereas $\Delta \phi \in [0, \pi]$ represents the angular time spent in the short circuit condition during a semi-period of vibration. A system implementing this interface is depicted in Fig.1, and an example of the voltage waveform is shown in Fig.2. As given by (2), v_p is non-sinusoidal. In order to analytically solve (1) while simplifying the calculations, only the first harmonic of v_p is considered. Using Fourier series, its expression can be obtained and is given by (3).

$$v_p(\theta) = \sum_{n=1}^{\infty} \left[a_n \cos(\theta) + b_n \sin(\theta) \right]$$

(3)

$$a_n = \frac{2}{\pi} \int_{\phi_s + \Delta \phi}^{\phi_s + \pi} v_p(\theta) \cos(\theta) \, d\theta$$

$$b_n = \frac{2}{\pi} \int_{\phi_s + \Delta \phi}^{\phi_s + \pi} v_p(\theta) \sin(\theta) \, d\theta$$

From equations (1), (2) and (3), we obtain the expression of the first Fourier series coefficients, given by (4).

$$a_1 = \frac{\alpha X_m}{\pi C_p} \left[\pi - \Delta \phi + \sin(2\phi_s + 2\Delta \phi) \right]$$

(4)

$$b_1 = -\frac{\alpha X_m}{\pi C_p} \left[\cos(\phi_s + \Delta \phi) \sin(\phi_s) \right]$$

Thus, the first harmonic of the piezoelectric voltage can be expressed in the Fourier domain as:

$$v_{p_1} = x \left(\frac{a_1}{X_m} - j \frac{b_1}{X_m} \right) = x(a_1 - jb_1)$$

(5)

Where x is the displacement written in the Fourier domain, and a_1 and b_1 are the first Fourier coefficients a_1 and b_1 divided by the displacement amplitude, X_m.

C. Expression of the harvested power

Considering that only the first voltage harmonic has an impact on the mechanical system dynamic due to the filtering effect of the resonator, we can substitute the voltage expression (5) in (1) in order to find the displacement amplitude. Solving the differential equation in the Fourier domain, we eventually obtain the displacement amplitude, given by (6).

$$X_m = \frac{F}{\sqrt{A^2 + B^2}}$$

(6)

$$A = K_{sc} - M \omega^2 + \alpha a_1^2$$

$$B = \omega B + \alpha b_1^2$$

For every semi-period, the harvested energy is the electrostatic energy stored in the piezoelectric capacitance C_p, when $\theta = \phi_s$. Thus, from (1) and (2), the general harvested power expression can be given as a function of the displacement amplitude, as shown in (7).

$$P = \frac{\omega \alpha^2}{2 \pi C_p} X_m^2 [\cos(\phi_s + \Delta \phi) + \cos(\phi_s)]$$

(7)

From (4), (6) and (7), we can now determine the harvested power for any parameter couple $(\phi_s, \Delta \phi)$.

III. MODEL ANALYSIS AND PERFORMANCE ESTIMATION

The extracted power with a particular harvesting interface is dependent on the PEH used, and varies with the product $k_m^2 Q_m$, where k_m^2 is the modified squared coupling coefficient, and Q_m, the mechanical resonator quality factor [2, 10]. It also varies with the normalized vibration frequency, Ω_m, which is the ratio of the angular vibration frequency, ω, to the angular mechanical resonant frequency of the PEH, ω_m. We introduce the normalized harvested power P/P_{lim}, of the standard SECE as a function of $k_m^2 Q_m$ and Ω_m in Fig. 3, where P_{lim} is the maximum harvestable power as defined in [10]. Fig.4 shows the same
analysis for the capacitive tuning approach, which consists in adapting the resistive and capacitive load of a PEH in order to tune its stiffness, as extensively explained in [9]. Finally, the results of the proposed SC-SECE approach are depicted in Fig.5.

Finally, the results of the proposed SC-SECE approach are depicted in Fig.5.

In order to evaluate the SC-SECE performance, a new FoM is established (8). This represents the integral of the power frequency response with one interface compared to that of an optimized resistive load. The maximum harvestable power as well as the FoM are shown on Figures 6 and 7 for the different interfaces. For lowly-coupled/highly-damped PEHs, the SECE and SC-SECE are the most effective. When $k_m^2 Q_m$ is higher than $\pi/4$, the maximum harvested power with the SECE interface starts decreasing while the two other interfaces reach P_{lim} for $k_m^2 Q_m \geq \pi/4$ for the capacitive tuning and for $k_m^2 Q_m \geq \pi/4$ for the SC-SECE approach. For any $k_m^2 Q_m$, the SC-SECE exhibits a higher FoM than any other interfaces.

$$FoM = \frac{\int_{0}^{\Omega_{m}} P_{interface}(\omega) d\omega}{\int_{0}^{\Omega_{m}} P_{dc}(\omega) d\omega}$$ (8)
IV. EXPERIMENTAL VALIDATION

A. Experimental setup

The experimental setup is presented in Fig. 8. A highly-coupled piezoelectric generator is fixed on an electromagnetic shaker which vibrates at an angular frequency ω and an amplitude F_m. The mass displacement x and speed \dot{x} are sensed by differential lasers. The piezoelectric voltage waveforms are both memorized and controlled using a Dspace control board dynamically fixing the parameters ϕ_S and $\Delta \phi$. In our experiment, we have collected data for $(\phi_S, \Delta \phi, \omega) \in [0, \pi] \times [0, \pi] \times [565, 943]$, recording precisely $30 \times 30 \times 100$ sets of waveforms.

B. Piezoelectric generator characteristics

The PEH shown in Fig. 8 has been characterized: its short-circuit angular frequency $\omega_0 = 628 \text{ rad.s}^{-1}$, squared coupling coefficient $k_{ps}^2 = 0.48$, and quality factor $Q_m = 20$ have been empirically determined. The piezoelectric capacitance C_p is 1.5 nF. The tests have been performed under an acceleration of 0.03 G, and the harvested power limit P_{lim} of our PEH under this vibration is 6μW.

C. Measurement results

The measurement results are presented in Fig. 9. The collected data allowed us to plot the maximal harvested power as a function of the vibration frequency as well as the optimal couples $(\phi_S, \Delta \phi)$ for any vibration frequency. These results can be compared to the theoretical ones which have been obtained by solving (7) with the PEH parameters. As shown in Fig. 9, the experimental results are in good agreement with the model. We observed both theoretically and experimentally, that for some frequencies, two optimal couples $(\phi_S, \Delta \phi)$ which maximize the harvested power can be found. Combined with our highly-coupled PEH, the SC-SECE interface allowed us to harvest more than 50% of the maximum harvested power P_{lim} on a relative frequency range $\Delta \omega/\omega_0$ as large as 50%, from 90Hz to 140Hz, which is more than any other reported energy harvesting interface.

CONCLUSION

In this paper, we propose a new extraction approach called SC-SECE. By adjusting both the energy harvesting event phase, and the length of a short circuit, this approach allows the harvested energy to be optimized while tuning the system’s electromechanical resonant frequency over a large frequency range. For our PEH (Fig. 8), the proposed SC-SECE increases the harvestable energy bandwidth by about 200% compared to a previously proposed capacitive-based tunable interface [9]. In order to implement this approach in an adaptive interface, the main remaining challenge is to design an algorithm which dynamically determines the couples $(\phi_S, \Delta \phi)$ which maximize the harvested power. This algorithm, if it successfully combines fast convergence and low power consumption, would lead to an efficient way to tune the resonant frequency of linear piezoelectric harvesters.
REFERENCES
