A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation

Andrew J. Gross, Xiaohong Chen, Fabien Giroud, Caroline Abreu, Alan Le Goff, Michael Holzinger, and Serge Cosnier

ACS Catal., Just Accepted Manuscript • Publication Date (Web): 22 May 2017
Downloaded from http://pubs.acs.org on May 22, 2017

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation

Andrew. J. Gross*, Xiaohong Chen, Fabien Giroud, Caroline Abreu, Alan Le Goff, Michael Holzinger, and Serge Cosnier*

Department of Molecular Chemistry, UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France

KEYWORDS. Bioelectrocatalysis, biocatalyst, paper electrode, enzymatic, FAD-GDH, multicopper oxidases

ABSTRACT. Enzymatic biofuel cells generate electrical energy from renewable sources with high selectivity and environmental benefits compared to lithium batteries and traditional fuel cells. For enzymatic fuel cells to become competitive, major improvements in electrode design are required to enhance power density, voltage output and stability. Here we have developed a freestanding paper biofuel cell comprising redox molecule embedded multi-walled carbon nanotube papers for electrical wiring of enzymes. The drop-coat and one-pot fabrication methods provide flexibility and permit easy scalability of functionalized bioelectrodes via commercially available materials. Buckypaper functionalized with 1,10-
phenanthroline-5,6-dione (PLQ) as an efficient electron mediator for fungal-derived FAD-dependent glucose dehydrogenase (FADGDH) shows very high steady-state current densities for glucose oxidation of $I_{\text{max}} = 5.38 \pm 0.54 \text{ mA cm}^{-2}$ at 0.15 V vs SCE at neutral pH. When coupled with a bioinspired protoporphyrin IX buckypaper cathode, the resulting glucose/O$_2$ fuel cell delivered a power density of $0.65 \pm 0.1 \text{ mW cm}^{-2}$ or $24.1 \pm 4.7 \text{ mW cm}^{-3}$ at a cell voltage of 0.5 V, limited by the cathode. Galvanostatic and current discharge experiments confirm robust short term operational performance.

INTRODUCTION. Enzymatic biofuels (EBFCs) convert chemical energy into electrical energy under mild conditions from the oxidation of organic fuels such as sugars and alcohols, coupled with the reduction of oxygen using redox enzymes as bioelectrocatalysts$^{1-3}$. Biofuel cells offer several advantages over lithium batteries and traditional fuel cells including the use of renewable, low-cost and safe fuels from ecological sources, and operation at neutral pH and ambient temperature. Furthermore, EBFCs can operate as membraneless fuel cells owing to the high selectivity of enzymes. Particular attention of biofuel cells over the last decade has been directed towards the use of EBFCs as micropower sources which harvest energy from biological fluids for implantable medical devices$^{4-7}$. In recent years, EBFCs have been successfully implanted in rats4, lobsters5 and snails6. Application of EBFCs for portable and wearable devices is more feasible and has enormous potential. For example, epidermal and contact-lens biofuel cells which harvest energy from sweat or tears using carbon nanotube based electrodes have started to emerge$^{8-10}$. Lightweight biofuel cells with small form factors offer the prospect of self-powered chemical sensors with in-situ detection and remediation of toxic chemicals11,12.

Specific challenges in EBFC electrode design include the development of electrodes which offer (i) stable immobilization of enzymes and mediators with high loadings, (ii) efficient electron transfer between the active sites of enzymes and the electrode, (iii) fast mass transport, and (iv) are lightweight and easily integrated into devices. To achieve the practical application of biofuel cells, a rapidly emerging approach is to use flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH) for catalytic
oxidation of glucose at the anode. The FADGDH enzyme offers major advantages for biofuel cells compared to other popular FAD-dependent enzymes such as the gold standard glucose oxidase (GOx)13,14. Unlike GOx, FADGDH is oxygen insensitive which prevents consumption of valuable oxygen at the anode. In-situ production of hydrogen peroxide which can be toxic to single compartment fuel cells is also avoided14. However, the commercially-available fungal FADGDH does not have the cytochrome-complex subunit for direct electron transfer (DET) with electrodes15. As such, the fungal FADGDH requires an artificial electron transfer mediator, which can result in kinetic and thermodynamic losses compared to DET16. The identification of high performance mediators is vital for fungal FADGDH for both biofuel cell and sensor applications. Few systems for mediated electron transfer with FADGDH have been investigated and are mainly based on osmium13,17–19, ruthenium20 and ferrocene14,21 redox complexes and polymers. These mediators have high redox potentials, slow mediator exchange due to structural rigidity, and require complicated synthesis from toxic precursors. Compared to metal-based mediators, small organic mediators with fast mediator exchange are attractive. For example, 1,2 and 1,4 naphthoquinones22,23 and phenothiazines24,25 are commonly exploited and give high catalytic currents at attractively low formal redox potentials.

Carbon nanotubes (CNTs) offer great advantages for bioelectrodes and are typically deposited onto an electrode support to give a large surface area with good stability and conductivity26. CNT-supported electrodes tend to be heavy, bulky and not easily miniaturizable27,28. Free-standing buckypaper electrodes prepared by vacuum filtration of CNT suspensions on the other hand are thin and lightweight, and offer the possibility to immobilize catalysis-promoting aromatic molecules by \(\pi\)-stacking interactions29–32. However, such paper electrodes are often fragile with limited conductivity and slow electron transfer kinetics compared to conventional bulk electrodes such as glassy carbon (GC). Further improvements in fabrication methods are required towards CNT paper electrodes with excellent homogeneity, reproducibility and electrochemical properties.
In this study, we report the preparation of new redox molecule embedded buckypapers for bioelectrocatalysis using four different types of commercially available redox molecules. The focus of the study is the development of high performance catalytic buckypaper bioelectrodes for enzyme wiring without the use of a supporting substrate or polymer scaffold. The use of 1,10-phenanthroline-5,6-dione (PLQ) as a small electron mediator for the fungus-derived FADGDH is explored and the resulting buckypaper anode integrated into a fully freestanding paper glucose/O\textsubscript{2} biofuel cell with a protoporphyrin buckypaper cathode. Notably, our approach here uses PLQ as a small organic mediator and nanotube binder and therefore avoids polymer and metal complex synthesis. This is in contrast to the structurally and electronically different Ru polymer mediator with PLQ ligands reported previously20.

EXPERIMENTAL SECTION.

Materials and Apparatus. Mono-sodium phosphate monohydrate (Na\textsubscript{2}HPO\textsubscript{4}, ≥ 98%), di-sodium hydrogen phosphate heptahydrate (Na\textsubscript{2}HPO\textsubscript{4}, 98–102%), N,N-dimethylformamide (DMF, 99.9%), potassium ferricyanide, 1,10-phenanthroline-5,6-dione (PLQ, 97%), protoporphyrin IX (PP, ≥ 95%), ferriprotoporphyrin IX (FePP, ≥ 98.0%), 1,4 naphthoquinone (NQ, 97%), potassium chloride (KCl, 99%), D-(+)-glucose (≥ 99.5%), sodium citrate (> 99%), sodium chloride (NaCl, 99.8%), copper chloride (CuCl\textsubscript{2}, 97%), hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}, 30 wt% in H\textsubscript{2}O), ethylenediaminetetraacetic acid (EDTA, 99%) and sulfuric acid (95–98%) were purchased from Sigma Aldrich and used as received. Bilirubin oxidase (BOD, 1.2 U mg-1) from *Myrothecium sp.* and flavin adenine dinucleotide-dependent glucose dehydrogenase (FADGDH, 1150 U mg-1 solid) from *Aspergillus sp.* were purchased from Amano (Japan) and Sekisui Diagnostics (UK), respectively and used as received. Enzymes were stored at -20 °C. Distilled water was obtained by water purification to a resistivity of 15 MΩ cm using a Millipore Ultrapure system. Commercial grade multi-walled carbon nanotubes (MWCNTs, Ø = 9.5 nm, 1.5 µm length, ≥ 95% purity) were obtained from Nanocyl and used as received without purification. High purity
oxygen and argon were obtained from Messer. Glucose solutions were left to mutarotate overnight to β-D-glucose prior to use.

Preparation of unmodified MWCNT buckypaper and redox-embedded MWCNT buckypaper electrodes by drop-coat method. First, a 1 mg mL$^{-1}$ MWCNT suspension was prepared by addition of 150 mg of non-functionalized MWCNTs into 150 mL of DMF. The dispersion was then sonicated for 30 min prior to use. After vigorous shaking for 1 min, 66 mL of the suspension was filtered through a Millipore PTFE filter (JHWP, 0.45 μm pore size, Ø = 46 mm) using a vacuum pump, washed with distilled water, and left for one hour. After filtration, the resulting unmodified buckypaper with Ø = 35 mm was left to dry at room temperature. The buckypaper was obtained after its careful removal from the filter paper, then cut into individual electrodes with Ø = 10 mm (geometric surface area of 0.785 cm2) using a metal cutter. To obtain functionalized MWCNT buckypaper electrodes, 150 μL of 0.6 mmol L$^{-1}$ or 10 mmol L$^{-1}$ modifier (PP and FePP) in DMF was drop-coated onto unmodified buckypaper surfaces with Ø = 10 mm (each electrode contains 5.39 mg of MWCNTs) and the resulting electrode left to dry overnight at room temperature. Electrical contact was obtained via a metal wire with carbon paste. The back and sides of the electrode were sealed with silicone paste.

Preparation of redox-embedded MWCNT buckypaper electrodes by one-pot method. A 1 mg mL$^{-1}$ MWCNT suspension was first prepared by addition of 150 mg of non-functionalized MWCNTs into 150 mL of DMF. The dispersion was then sonicated for 30 min prior to addition of the modifier (PLQ, NQ, PP, and FePP). The modifier, dissolved in a minimum volume of DMF, was slowly added into the MWCNT suspension to give a final 0.6 mmol L$^{-1}$ or 2 mmol L$^{-1}$ modifier concentration. Prior to filtration, the resulting suspension was sonicated for a further 30 min. After rigorous shaking for 1 min, 66 mL of the suspension was filtered, washed and dried (as above for the unmodified buckypaper) and the resulting buckypaper cut into electrodes with Ø = 10 mm. Electrical contact was obtained via a metal wire with carbon paste. The back and sides of the electrode were sealed with silicone paste.
Preparation of buckypaper bioelectrodes. 5 mg mL$^{-1}$ stock solutions of BOD and FADGDH were prepared in 0.1 mol L$^{-1}$ phosphate buffer pH 7.0 and McIlvaine buffer pH 7.0 (0.2 mol L$^{-1}$ Na$_2$HPO$_4$, 0.1 mol L$^{-1}$ citric acid), respectively. 150 µL of 5 mg mL$^{-1}$ enzyme solution (0.75 mg enzyme) was then added to the surface of a buckypaper with Ø = 10 mm and the enzyme solution allowed to fully absorb at 4 °C overnight. The electrode was subsequently rinsed with the corresponding buffer before use.

Electrochemistry. Electrochemical measurements were performed at room temperature using an Eco Chemie Autolab PGSTAT 100 potentiostat running GPES 4.9 software or a Biologic VMP3 Multi Potentiostat with EC-lab software. For half-cell testing, a conventional three-electrode cell setup was used comprising a buckypaper working electrode (Ø = 10 mm), a saturated calomel reference electrode (SCE with sat. KCl) and a Pt wire counter electrode. The complete fuel cell setup comprised a one-pot protoporphyrin buckypaper with BOD biocathode (BP$_{PP}$-BOD) and a one-pot phenanthroline quinone buckypaper with FADGDH (BP$_{PLQ}$-FADGDH) bioanode immersed in 20 mL of McIlvaine buffer pH 7.0 with an inter-electrode distance of 3 mm. Gas flows were set qualitatively and moderately to obtain reproducible conditions. Average catalytic current densities were obtained by subtracting the background current: the signal obtained without oxygen, for the cathode, and without glucose, for the anode. Fuel cell experiments were performed by recording a linear sweep polarization from the open circuit voltage (OCV) to 0.02 V with the anode connected to the counter and reference leads, and the cathode connected to the working lead. Power densities were obtained by dividing the power delivery by the surface area or volume of one electrode.

Scanning electron microscopy. Buckypaper electrodes with Ø = 3 mm were imaged using a FEI/Quanta FEG 250 scanning electron microscopy (Hillsboro, OR, USA) operating at an accelerating voltage of 5 kV without metal coating.
Static water contact angles. Water contact angles were obtained at room temperature by delivering a 2 µL droplet of distilled water onto the sample surface on a horizontal stage using a Dataphysics OCA 35 system. Multiple droplet measurements (8 or 9) were recorded per sample type.

RESULTS AND DISCUSSION.

Characterization of unmodified MWCNT and redox-embedded MWCNT buckypaper electrodes

Pristine freestanding buckypaper prepared from filtration of CNT dispersions without additives tends to be fragile and difficult to manipulate. Our initial experiments established that the handleability of pristine unmodified BP was improved when the amount of MWCNTs in the final product was increased by at least a factor of two\(^3\). Redox-embedded BP was subsequently prepared in several steps (see Experimental) either by addition of redox molecules to the MWCNTs dispersion before filtration (one-pot method) or after filtration by drop-coating onto the unmodified BP (drop-coat method). The BP functionalization is based on π-π stacking interactions between aromatic groups and CNT sidewalls. For all buckypapers, flat and reproducible disks were obtained after filtration (Fig. 1A), drying and cutting (Fig. 1B and Fig. 1C, respectively). BP thicknesses ranged between 230-320 µm (see Table S1). The variability in thickness results from differences in vacuum pressure and the MWCNTs dispersion.

Scanning electron microscopy was performed to evaluate the morphology of unmodified BP (BP, Fig. 1D) and BP prepared from the one-pot method with redox molecules: protoporphyrin IX (BP\(_{PP}\), Fig. 1E), ferriprotoporphyrin IX (BP\(_{FePP}\), Fig. 1F), and 1,10-phenanthroline-5,6-dione (BP\(_{PLO}\), Fig. 1G). The SEM images reveal that the BPs comprise a random and entangled network of MWCNTs with nanoscale porosity. The images show subtle evidence that functionalized BPs have a flatter and more compact topography compared to unmodified BP, suggestive of more intimate interactions between nanotubes in the presence of redox molecules via π-π stacking.
Cyclic voltammograms (CVs) of the Fe(CN)$_6^{3-}$ redox probe recorded at unmodified and BP$_{PP}$ paper electrodes reveal a significant increase in peak current with a decrease in peak-to-peak separation (ΔE_P) following modification with protoporphyrin molecules (see Fig. S1). The dramatic enhancement with chemical functionalization is partially attributed to a physical improvement in the electronic connectivity between carbon nanotubes. The increase in peak current observed is also partially attributed to improved diffusion of Fe(CN)$_6^{3-/4+}$ in the 3D-structured electrode, facilitated by the increased surface hydrophilicity (Fig. S2).

To investigate the presence and accessibility of porphyrin and PLQ molecules in BP prepared via the one-pot and drop-coat methods, cyclic voltammetry was performed on one-sided BP samples with a geometric surface area of 0.785 cm2. CVs were first recorded at functionalized electrodes prepared by the one-pot method in argon-saturated 0.1 mol L$^{-1}$ phosphate buffer pH 7.0. Fig. 2 shows CVs recorded at BP$_{FePP}$ and BP$_{PLQ}$ prepared via the one-pot method. The CVs reveal the presence of well-defined chemically reversible processes. At BP$_{FePP}$, the one-electron FeIII/FeII redox couple is observed at $E_{1/2} = -0.38$ V vs SCE (10 mV s$^{-1}$), consistent with reported values of $E_{1/2} = -0.34$ V and -0.39 V vs SCE for FePP modified MWCNTs on GC33,34. At BP$_{PLQ}$, the two-electron two-proton o-quinone/o-hydroquinone system is observed at $E_{1/2} = -0.13$ V vs SCE (10 mV s$^{-1}$) as previously observed for PLQ adsorbed on MWCNTs on GC electrodes35.

Well-defined voltammograms and a linear dependence ($r^2 > 0.95$) of peak current on scan rate for anodic and cathodic peaks are observed at BP$_{FePP}$ and BP$_{PLQ}$ electrodes (Fig. 2C and Fig. 2D), confirming that the redox molecules are accessible and surface bound. The stability of the immobilized molecules was tested by subjecting the electrodes to repeat potential cycling at 20 mV s$^{-1}$ (Fig. S3). No noticeable loss in electroactivity was observed after 20 cycles, confirming the high stability of the immobilized redox groups and the bulk nanotube structure despite the non-covalent modification approach.
Modified BP$_{\text{FePP}}$ electrodes prepared by the drop-coat method were also examined by voltammetry and
gave the expected electroactivity as observed for the one-pot method. BP$_{\text{FePP}}$ electrodes were prepared by
drop-coating 150 µL of 0.6 mmol L$^{-1}$ or 10 mmol L$^{-1}$ FePP DMF solutions onto pristine unmodified BPs
($Ø = 10$ mm). The electrochemical parameters obtained from CVs recorded in phosphate buffer pH 7.0 at
10 mV s$^{-1}$ are listed in Table 1.

Examination of the data in Table 1 reveals that one-pot BP$_{\text{FePP}}$ exhibits a higher surface concentration
than drop-coat BP$_{\text{FePP}}$ (1.38 ± 0.58 versus 0.48 ± 0.25 × 10$^{-7}$ mol cm$^{-2}$) when the same initial modifier
concentration is used, consistent with effective bulk functionalization via the one-pot method. Increasing
the modifier concentration from 0.6 mmol L$^{-1}$ to 10 mmol L$^{-1}$ resulted in a very high surface concentration
of 6.43 ± 3.58 × 10$^{-7}$ mol cm$^{-2}$, highlighting the possibility to tailor redox molecule loading in the paper
electrodes. It is expected that such high surface concentrations would be possible via the one-pot method
with a 10 mmol L$^{-1}$ modifier concentration. However, this was not explored due to the high volumes and
quantity of modifier required for one-pot buckypaper fabrication. The surface concentrations for FePP
prepared here are significantly higher than previously reported values of 6.8 × 10$^{-10}$ mol cm$^{-2}$ and 1.1 ×
10$^{-9}$ mol cm$^{-2}$ for FePP modified MWCNTs on GC33,34. The high loadings observed here are consistent
with an effective high surface area 3D-structured matrix.

Table 1 also reveals that BP$_{\text{FePP}}$ prepared via one-pot and drop-coat methods with 0.6 mmol L$^{-1}$
modifier solution give similar peak-to-peak separation values of ≤ 65 mV and therefore similar apparent
electron transfer kinetics. Significantly larger ΔE_P values and therefore sluggish electron transfer kinetics
were observed for highly functionalized BP$_{\text{FePP}}$ electrodes prepared with 10 mmol L$^{-1}$ of the modifier.
This is consistent with an extensive network of redox molecules being deeply embedded in the CNT
structure which would increase electron tunneling distances and film resistivity.

On the basis of the BP$_{\text{FePP}}$ optimization experiments, we prepared PLQ buckypaper via the one-pot
method using a modestly high concentration of 2 mmol L$^{-1}$. No further optimization was performed. The
surface concentration obtained for one-pot BP_{PLQ} was 1.21 ± 0.30 × 10^{−7} mol cm^{−2} which reveals the possibility to obtain high redox molecule loadings with a near 1 × 10^{−7} mol cm^{−2} concentration. The ∆E_p value of 118 mV observed for BP_{PLQ} is consistent with a slow rate of electron transfer, increased BP resistivity, and a large degree of potential inversion for the two-electron two-proton quinone process³⁶.

**Bioelectrocatalytic O₂ reduction at BP_{pp} electrodes with immobilized BOD enzyme from *Myrothecium verrucaria* **

For biocathode construction, the multicopper oxidase (MCO) enzyme BOD from *Myrothecium verrucaria* (*Mv*) was employed as the catalyst for the four-electron reduction of O₂ to H₂O. BOD is a promising enzyme for biofuel cells due to its high bioelectrocatalytic activity under mild conditions and formal potential close to that of the O₂/H₂O couple (0.816 V vs RHE at pH 0). Bilirubin, as a natural substrate for BOD, and its analogues, have been attached to MWCNT electrodes to facilitate DET with *Mv*BOD for O₂ reduction^{34,37}. The interaction is supported by favorable immobilization and orientation. However, a commonly accepted problem with BOD is that significant catalytic activity loss is observed in the presence of H₂O₂, a common by-product of oxidase enzymes found in glucose/O₂ biofuel cells. The use of O₂-insensitive FADGDH in biofuel cell design can circumvent this issue.

In this study the porphyrin-BOD system was exploited for the development of buckypaper cathodes. One-pot BP_{pp} electrodes were first prepared then incubated with BOD, washed with phosphate buffer pH 7.0, then tested for enzyme presence and activity. Fig. 3A and Fig. 3B show CVs recorded in argon and oxygen at one-pot BP_{pp}-BOD and BP-BOD, respectively. Under oxygen, both types of electrode exhibited similar onset potential of $E_{\text{onset}} = 0.54 \pm 0.01$ V vs SCE and 0.52 ± 0.01 V vs SCE, respectively. The onset potentials are close to that of the predicted T1 copper site of *Mv*BOD responsible for substrate oxidation and successive electron transfers ($E_{1/2(T1)} = 0.48$ V vs SCE at pH 7.0)³⁴. The onset potentials are close to the ideal thermodynamic reduction potential for O₂ of 0.572 V vs SCE at pH 7.0 (assuming a potential difference of 244 mV between RHE and SCE reference electrodes). The onset
potential values are therefore very attractive for biofuel cell applications and consistent with efficient single-proton single-electron DET between the BP and the enzyme.

The catalytic wave observed in oxygen at BP_{pp} confirms DET accompanied with the electrocatalytic reduction of oxygen via BOD. Based on repeat measurements, an average maximum current density of 0.34 ± 0.15 mA cm⁻² is observed at BP compared to 1.33 ± 0.17 mA cm⁻² for BP_{pp} (one-pot method), confirming substantially enhanced performance for the protoporphyrin buckypaper. At BP, an ill-defined “residual slope” current is observed in oxygen, attributed to unfavorable orientation of adsorbed enzymes. In contrast, at the BP_{pp} electrode, well-defined steady-state voltammograms are observed consistent with fast mass transport, enzyme catalysis, and heterogeneous electron transfer at the buckypaper electrode³⁷. It is noted that a scan rate of 0.2 mV s⁻¹ was employed due to the superior steady-state signals with low capacitance (see Fig. S4 for catalytic currents recorded at different scan rates). A summary of the catalytic parameters obtained at different bioelectrodes is shown in Table 2.

The long term stability of BP_{pp}-BOD was also assessed by periodically recording chronoamperograms at <i>E</i>_{app} = 0.2 V vs SCE for 30 min over 24 days of storage in phosphate buffer pH 7.0 (Fig. S5). The corresponding plot in Fig. 3C of the maximum catalytic current obtained on different days reveals remarkable stability for BP_{pp}-BOD, with the current density decreasing by 10% over the first 7 days and 27% over 24 days. Stability experiments performed in a similar manner at other MWCNT-MCO enzyme cathodes report 40-45% current loss after one week and 45-60% after 20-24 days^{38,39}. To clarify, such stability experiments evaluate both operational stability (for 30 mins per day) and storage stability. The enhanced stability observed here compared to CNT-modified GC electrodes is consistent with improved physical enzyme entrapment into the nanopore-containing CNT matrix via fixation and/or dynamic reorganization effects⁴⁰

A brief assessment of the bioelectrocatalytic performance of BP_{pp}-BOD was also performed to demonstrate enzyme inhibition at the biocathode. CVs recorded in the presence and absence of 40 mmol
L-1 H\textsubscript{2}O\textsubscript{2} in phosphate buffer pH 7.0 in oxygen are shown in Fig. S6 and clearly reveal the loss of oxygen reduction current due to inhibition of immobilized bilirubin oxidase by H\textsubscript{2}O\textsubscript{2}. The catalytic current was suppressed in the presence of H\textsubscript{2}O\textsubscript{2} and remained suppressed after transfer to a fresh phosphate buffer solution, confirming that the enzyme’s activity was inhibited and not restored. The absence of oxygen reduction in these experiments validates the importance of the active ‘wired’ enzyme as the biocatalyst.

Chronoamperometry performed at BP\textsubscript{PP}-BOD in phosphate buffer pH 7.0 in oxygen (Fig. S6) revealed the rapid nature of enzyme inhibition by H\textsubscript{2}O\textsubscript{2} and the good stability of the biocathode in the presence of a physiologically relevant concentration of NaCl (100 mM).

The bioelectrocatalytic performance of BP\textsubscript{PP} for oxygen reduction was also performed at electrodes prepared by the drop-coat method. No significant difference in E_{onset} was observed between drop-coat and one-pot BP\textsubscript{PP} electrodes. Likewise, equivalent sigmoidal steady-state current responses (with different current magnitudes) were observed for all BP\textsubscript{PP} electrodes. For drop-coat BP\textsubscript{PP}, the maximum average catalytic current only slightly increased from 1.10 ± 0.14 to 1.26 ± 0.11 mA cm-2 with an increase in protoporphyrin modifier from 0.6 mmol L-1 to 10 mmol L-1.

The best performing biocathode identified here was the BP\textsubscript{PP}-BOD prepared using the one-pot method with $I_{\text{max}} = 1.33 ± 0.17$ mA cm-2. The high performance of this biocathode is clear given that typical values obtained by our group and others for CNT paper-based MCO cathodes are 0.17 to 1.1 mA cm-2 in oxygen-saturated solution27,29,30,41,42.

Bioelectrocatalytic glucose oxidation at BP\textsubscript{PLQ} electrodes with immobilized FADGDH from \textit{Aspergillus sp.}

For bioanode development, the one-pot method was exploited for preparation of a new type of redox-embedded buckypaper with immobilized FADGDH. To prepare the anode, a MWCNT dispersion containing 2 mmol L-1 of 1,10-phenanthroline-5,6-dione (PLQ) was used. The bioanode was obtained by drop-casting 150 µL of 5 mg mL-1 enzyme solution onto the BP\textsubscript{PLQ} and leaving the solution overnight.
until the droplet had fully adsorbed. The PLQ molecule has previously been reported as a mediator for the
cofactors NADH/NADPH coupled with NAD/NADP-dependent enzymes\(^{35,43}\). To the best of our
knowledge, the phenanthroline quinone as a free ligand has not been demonstrated as a mediator for
FAD-dependent enzymes such as FADGDH. In addition to the low redox potentials, a major advantage of
phenanthroline quinone mediators is their non-reactivity towards active-site enzyme amine and thiol
groups\(^{43}\). In this work we have investigated the use of PLQ, in the form of a redox-embedded
functionalized buckypaper, to electrically connect the active site of FADGDH to the electrode for
bioelectrocatalytic oxidation of glucose (See Fig. 4A). In this mechanism the FADGDH oxidizes the \(\beta\)-D-
-glucose to D-glucono-1,5-lactone using the FAD cofactor which itself is reduced to FADH\(_2\). The PLQ
mediator then acts as a secondary electron acceptor to oxidize the reduced cofactor, FADH\(_2\). The mediator
is finally reoxidized by the electrode which is set at an appropriate oxidizing potential.

Fig. 4B and Fig. S7 show CVs recorded in 0 (\(\neg\)) and 170 mmol L\(^{-1}\) (\(\neg\)) glucose in McIlvaine buffer pH
7.0 at one-pot BP\(_{PLQ}\)-FADGDH and BP-FADGDH electrodes, respectively. In the presence of 170 mmol
L\(^{-1}\) glucose an onset potential of \(E_{\text{onset}} = -0.23 \pm 0.01\) V vs SCE is observed at BP\(_{PLQ}\)-FADGDH which is
attractively low for a glucose-oxidizing bioanode and similar to that obtained using 1,4 naphthoquinone
hydrogel mediators with FADGDH \((E_{\text{onset}} = -0.18\) to \(-0.25\) V vs SCE at near neutral pH\(^{22,23}\)). Interestingly,
the onset potential of -0.23 V is much more negative than the \(-0.05\) V previously reported using a Ru-
PLQ polymer with FADGDH\(^{20}\), highlighting an advantage of using the free PLQ mediator in this form.
The onset potential is around 180 mV positive of the estimated redox potential of -0.41 V vs SCE for the
enzyme-bound relay, FAD/FADH\(_2\), consistent with thermodynamically attractive electron wiring\(^{22}\). The
onset potential at BP\(_{PLQ}\) for glucose oxidation is also about 200 mV more negative than ferrocene and
osmium mediator-modified electrodes with \(E_{\text{onset}} \approx -0.05\) to 0.15 V vs SCE\(^{17,19,21}\), and thus PLQ is an
attractive mediator for biofuel cell applications.

The voltammograms recorded at BP\(_{PLQ}\) under argon in the absence and presence of 170 mmol L\(^{-1}\)
glucose clearly demonstrate a drastic increase in current signal with glucose addition. Well-defined
sigmoidal waves are observed at 0.2 mV s\(^{-1}\) consistent with electrocatalytic oxidation of glucose. A maximum current density of 5.38 ± 0.54 mA cm\(^{-2}\) is observed at 0.15 V at BP\(_{PLQ}\) without stirring. In contrast, voltammograms recorded at BP under the same condition reveal a negligible maximum current density of 0.002 ± 0.001 mA cm\(^{-2}\). The substantial enhancement in catalytic current provides compelling evidence for mediated electron transfer reaction via PLQ. The high catalytic currents obtained were subsequently validated by comparison with a CNT paper prepared using a known mediator for FADGDH. A 1,4 naphthoquinone buckypaper, BP\(_{NQ}\)-FADGDH, was prepared and tested in the same manner as for BP\(_{PLQ}\)-FADGDH. Voltammetry revealed a significantly smaller maximum current density of 2.20 mA cm\(^{-2}\) (Fig. S8). Despite being less powerful than BP\(_{PLQ}\) electrode, the BP\(_{NQ}\) electrode still exceeds recent high performance NQ-anodes\(^{22,23}\).

The catalytic current obtained of 5.38 ± 0.54 mA cm\(^{-2}\) at 0.15 V vs SCE for BP\(_{PLQ}\) in unstirred solution exceeds the performance of that observed at most bioanodes to date without the use of hydrodynamic conditions. We believe that the BP\(_{PLQ}\) anode exhibits the highest catalytic density for glucose oxidation of any paper-based bioanode. At phenothiazine-modified commercial buckypaper with immobilized NAD-dependent GDH and NAD cofactor, current densities up to 2.6 mA cm\(^{-2}\) at 25°C have been reported.\(^{25}\) With addition of 1 mmol L\(^{-1}\) NAD\(^+\) in solution, the catalytic current increased to 4.5 mA cm\(^{-2}\) at a high potential of 0.35 V. In addition to the high potential required, the use of NAD in solution is less convenient than if the cofactor is surface-bound or enzyme-bound. High performing bioanode architectures typically produce no more than 2 mA cm\(^{-2}\)\(^{22,44,45}\) with the exception of a hierarchical porous carbon bioelectrode which exhibited enormous densities up to 100 mA cm\(^{-2}\) with rapid convection\(^{18}\). At CNT-modified Toray papers with immobilized glucose oxidase and dehydrogenases, current densities in the range 1-3.3 mA cm\(^{-2}\) have been reported\(^{23,46-48}\).

Evaluation of the steady-state current at a fixed potential of 0.15 V as a function of glucose concentration reveals a linear increase in the range 1 mmol L\(^{-1}\) to 50 mmol L\(^{-1}\) (see calibration plot in Fig.
S9). As a side note, the linearity of $r^2 = 0.996$ and the ability to detect beyond the upper limit of 30 mmol L$^{-1}$ means that the BP$_{PLQ}$-FADGDH meets basic requirements for a commercial glucose sensor.

Fig. 4C shows that the steady-state currents increased with increasing concentration to a plateau at 170 mmol L$^{-1}$ glucose, hence 170 mmol L$^{-1}$ was adopted in experiments as the concentration to maximize catalytic current output, limited by the enzymatic reaction and catalyst surface coverage. Limiting current values were reached within 30 seconds (Fig. S10) consistent with fast mass transport of glucose at the electrode. Estimated values for the apparent Michaelis-Menten and velocity constants of $K_m = 40.4$ mmol L$^{-1}$ and $V_{max} = 6.1$ mA cm$^{-2}$, respectively, are obtained. The estimated K_m is similar to that observed for fungal FADGDHs ($K_m = 35$ mmol L$^{-1}$) and hence the BP$_{PLQ}$ electrode maximizes electrocatalysis without significantly affecting the enzymes binding constant for glucose.

The stability of the BP$_{PLQ}$-FADGDH bioanode was assessed over 10 days by periodically recording chronoamperograms at $E_{app} = 0.15$ V vs SCE for 30 min in McIlvaine buffer pH 7.0 (Fig. S11). The plot in Fig. 4D of the maximum catalytic current obtained on different days reveals that the bioanode is significantly less stable than the biocathode. After 2 days 75% of the original current remains. After 5 days only 48% of the initial current remains. Similar storage stability for an FADGDH electrode has previously been observed using an Os polymer mediator with 80% of the initial current observed after 2 days followed by a rapid breakdown to 56% after 6 days13. This finding suggests that PLQ may be no-less toxic or inhibitory towards FADGDH than osmium polymers. Despite the poor stability, high maximum current densities of ≈ 1 mA cm$^{-2}$ are nevertheless possible after 10 days confirming that the BP$_{PLQ}$ is operational for several days.

Assessment of the bioelectrocatalytic performance of BP$_{PLQ}$-FADGDH was also performed to explore enzyme inhibition at the bioanode. CVs recorded before and after addition of 10 mmol L$^{-1}$ of CuCl$_2$ in McIlvaine buffer pH 7.0 are shown in Fig. S12 and clearly reveal the loss of glucose oxidation current due to inhibition of immobilized FADGDH, attributed to binding of Cu$^{2+}$ to the FADH$_2$ cofactor as
previously observed for glucose oxidase50. The possibility to reverse the enzyme inhibition by addition of a strong metal chelator to reverse binding of the metal ions to FAD was also tested. The voltammogram obtained after addition of an excess of ethylenediaminetetraacetic acid (EDTA, 11 mmol L-1) and mild stirring shows an increase in the catalytic oxidation current on the reverse sweep, attributed to partial reactivation of the biocatalyst.

Single compartment biofuel cell with a BP\textsubscript{PP}-BOD cathode and BP\textsubscript{PLQ}-FADGDH anode prepared via one-pot fabrication

Power generation from membraneless glucose/oxygen biofuel cells using redox-embedded buckypapers was subsequently investigated. A single-compartment glucose/O\textsubscript{2} paper-based biofuel cell was constructed using a BP\textsubscript{PP}-BOD cathode and a BP\textsubscript{PLQ}-FADGDH anode prepared via one-pot methods (Fig. 5A). Linear polarization curves were recorded at 0.2 mV s-1 in McIlvaine buffer pH 7.0 to evaluate the performance under oxygen-saturated (≈ 1.1 mmol L-1) and quiescent oxygen (≈ 0.23 mmol L-1) with 170 mmol L-1 glucose51. Large OCVs of 0.74 ± 0.01 V and 0.67 ± 0.01 V were obtained in quiescent and oxygen-saturated conditions, respectively. The OCVs match closely to the estimated maximum voltage of 0.77 V from the half-cell polarization experiments. The difference in OCV between the quiescent and oxygen-saturated conditions is attributed to a small amount of degradation between fuel cell testing experiments.

Average polarization and power curves (Fig. 5B and Fig. 5C) reveal a maximum power density of 0.65 ± 0.10 mW cm-2 or 24.07 mW cm-3 at 0.5 V for the biofuel cell under oxygen-saturated conditions without stirring. Under quiescent oxygen with no stirring, a maximum power density of 0.053 mW cm-2 or 1.97 mW cm-3 is observed. The power outputs for these glucose/O\textsubscript{2} biofuel cells are either very good or exceptional depending on whether the power delivery is divided by the surface area (cm2) or volume (cm3). It is noted that we used equal sized anodes and cathodes in this work and that the power densities were obtained by dividing the power delivery by either the surface area or volume of one electrode. Given
that buckypaper is a three-dimensional electrode and size is a crucial parameter for portable biofuel cell applications, the power density in mW cm\(^{-3}\) is arguably more appropriate. However, for this work we have chosen to remain with the standard mW cm\(^{-2}\) convention for figures. Maximum power outputs for a single EBFC in the literature are between 1.45 to 2.3 mW cm\(^{-2}\) at 0.3 to 0.55 V\(^{22,23,52}\). One of these previously reported biofuel cells, based on our estimates, gives up to 3.8 mW cm\(^{-3}\) (1.54 mW cm\(^{-2}\)\(^{52}\)), and thus the delivery of 24.07 mW cm\(^{-3}\) reported here is markedly high.

The difference in power density observed between the saturated and quiescent oxygen conditions reveals that the biofuel cell is strongly limited by oxygen availability at the cathode. Even in the presence of oxygen-saturated conditions the biocathode is limiting.

Polarization and power curves were also recorded at freshly prepared biofuel cells in the absence of glucose under oxygen-saturated conditions as control experiments (Fig. S13). In the absence of the enzyme’s substrate, the low power output and a small OCV, namely 0.02 mW cm\(^{-2}\) and 0.53 ± 0.02 V, clearly illustrate and confirm the unambiguous role of FADGDH and the need for glucose for effective biofuel cell performance.

In order to assess the operational stability of the biofuel cell, potentiostatic and galvanostatic tests were performed for 30 min. This duration may, for example, be considered as an adequate operational time for a single use self-powered biosensor. The stability of the biofuel cell was first examined by applying a mild fixed voltage of 0.2 V and monitoring the current in oxygen-saturated solution. The power obtained from the recorded current revealed a stable power output of 295 ± 25 µW cm\(^{-2}\) after an initial 30 s induction period (Fig. 6A). Similar glucose/oxygen biofuel cell stability has been observed using FADGDH which, notably, is vastly superior to that observed with the GOx enzyme\(^{14}\). The initial induction period is attributed to diffusional equilibration and high charging currents. To further assess the stability, a current of 500 µA was continuously drawn and the evolution of voltage monitored (Fig. 6B). Following the short initial induction period, a stable voltage of 0.57 ± 0.01 V is obtained.
CONCLUSIONS.

Electricity generation from glucose and oxygen using small and lightweight enzymatic biofuel cells opens up the attractive prospect of self-powered health and environmental sensor devices. Here we report the fabrication of new freestanding redox-embedded (porphyrin, phenanthroline quinone and napthoquinone) carbon nanotube paper electrodes with physical durability, practical flexibility and excellent electrochemical properties. Elaboration of the electrodes for construction of bioelectrodes with high catalytic performance compared to literature values was subsequently demonstrated. Very high catalytic performance was observed by employing 1,10-phenanthroline-5,6-dione as an electron transfer mediator with FADGDH at the anode. The biofuel cell delivers mW cm\(^{-2}\) power densities in either quiescent solution (dissolved oxygen) or saturated oxygen solution conditions, with 170 mmol L\(^{-1}\) glucose at neutral pH and room temperature. In addition, the half-cell and biofuel cell experiments show good operational stability which could be appropriate for disposable self-powered sensors. We expect that the proposed fabrication methods, buckypapers, and use of PLQ for mediated electron transfer with FADGDH will advance the field of biofuel cells towards practical applications, especially considering the excellent prospects of the FADGDH enzyme and paper-based bioelectrodes. Future work is now required to address the limiting cathode power output under quiescent oxygen levels (for example, by enhancement of dioxygen mass transport) and the comparatively poor stability observed at the anode over several days (for example, via caging and shrinking effects).
FIGURES.

Fig. 1 (A, B) Photographs of freshly prepared BP_{PP} buckypaper (A) after filtration and (B) after filtration, drying and cutting into the electrode. (C-G) SEM micrographs of (C, E) BP_{PP}, (D) BP, (F) BP_{FePP}, and (G) BP_{PLQ} buckypaper electrodes recorded at (C) 60x, (D-G) 5,000x and 40,000x (inset) magnification. All modified electrodes were prepared by the one-pot method.

Fig. 2 (A,B) CVs recorded at (A) BP_{FePP} and (B) BP_{PLQ} buckypaper electrodes (one-pot method) in Ar saturated 0.1 mol L⁻¹ phosphate buffer pH 7 at different scan rates. (C, D) Corresponding plots of anodic and cathodic peak current versus scan rate.
Fig. 3 (A,B) CVs of bioelectrocatalytic O₂ reduction recorded at (A) BPₚₚ (one-pot method) and (B) BP buckypaper electrodes after BOD enzyme immobilization in (--) Ar saturated and (--) O₂ saturated 0.1 mol L⁻¹ phosphate buffer pH 7.0 at scan rate = 0.2 mV s⁻¹. (C) Evolution of maximum catalytic current density as a function of time for BPₚₚ-BOD. Chronoamperograms recorded at E_app = 0.2 V vs SCE and current densities obtained after 30 min. Error bars correspond to one standard deviation from two electrodes.

Fig. 4 (A) Scheme illustrating bioelectrocatalytic oxidation of glucose on BP₂PLQ buckypaper via MET with the active site of FADGDH. (B) CVs recorded at a BP₂PLQ buckypaper electrode after FADGDH immobilization in (--) 0 mmol L⁻¹ and (--) 170 mmol L⁻¹ glucose in Ar saturated McIlvaine buffer pH 7.0 at scan rate = 0.2 mV s⁻¹. (C) Plot of average current density obtained for different glucose concentrations recorded at three BP₂PLQ-FADGDH electrodes. (D) Evolution of maximum catalytic current density as a function of time for BP₂PLQ-FADGDH with 170 mmol L⁻¹ glucose. (C, D) Chronoamperograms recorded at E_app = 0.15 V vs SCE and current densities obtained after 30 min. Error bars correspond to one standard deviation from at least two electrodes.
Fig. 5 (A) Scheme illustrating the single compartment buckypaper biofuel cell comprising an O₂ reducing BP_{pp}-BOD cathode and glucose oxidizing BP_{PLQ}-FADGDH anode. (B, C) Biofuel cell polarization (···) and power curves (−) recorded in (B) oxygen-saturated and (C) quiescent oxygen in McIlvaine buffer pH 7.0 with 170 mmol L⁻¹ glucose. Polarization voltammograms were recorded at 0.2 mV s⁻¹. Error bars correspond to one standard deviation from three biofuel cells.

Fig. 6 (A) Power generated from current discharge at 0.2 V and (B) voltage generated at 600 µA cm⁻² (500 µA) for 30 min operation of the BP_{pp}-BOD / BP_{PLQ}-FADGDH biofuel cell in O₂ saturated McIlvaine Buffer pH 7.0 with 170 mmol L⁻¹ glucose. Error bars correspond to one standard deviation from three biofuel cells.
Table 1. Electrochemical parameters for BP_{FePP} and BP_{PLQ} electrodes prepared by one-pot and drop-coating functionalization methods.

<table>
<thead>
<tr>
<th>Buckypaper electrode (numbera)</th>
<th>Fabrication method</th>
<th>Modifier concentration (mmol L$^{-1}$)</th>
<th>Surface concentrationb (10^7 mol cm$^{-2}$)</th>
<th>ΔE_p (mV)</th>
<th>$E_{1/2}$ (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_{FePP} ($n=3$)</td>
<td>One-pot</td>
<td>0.6</td>
<td>1.38 ± 0.58</td>
<td>65</td>
<td>-0.37</td>
</tr>
<tr>
<td>BP_{FePP} ($n=3$)</td>
<td>Drop-coat</td>
<td>0.6</td>
<td>0.48 ± 0.25</td>
<td>55</td>
<td>-0.35</td>
</tr>
<tr>
<td>BP_{FePP} ($n=7$)</td>
<td>Drop-coat</td>
<td>10</td>
<td>6.43 ± 3.58</td>
<td>215</td>
<td>-0.36</td>
</tr>
<tr>
<td>BP_{PLQ} ($n=3$)</td>
<td>One-pot</td>
<td>2</td>
<td>1.21 ± 0.30</td>
<td>118</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

a Number of independent buckypaper electrode samples analyzed. b Surface concentrations obtained from the anodic peak of CVs recorded at 10 mV s$^{-1}$ in Ar.

Table 2. Catalytic parameters for BP_{PP}-BOD cathode and BP_{PLQ}-FADGDH anode prepared by one-pot and drop-coating functionalization methods.

<table>
<thead>
<tr>
<th>Buckypaper electrode (numbera)</th>
<th>Fabrication method (modifier concentration)</th>
<th>Onset potential (V)b</th>
<th>Maximum catalytic current (mA cm$^{-2}$)b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP_{PP}-BOD ($n=5$)</td>
<td>One-pot (0.6 mmol L$^{-1}$)</td>
<td>0.54 ± 0.01</td>
<td>1.33 ± 0.17</td>
</tr>
<tr>
<td>BP_{PP}-BOD ($n=3$)</td>
<td>Drop-coat (0.6 mmol L$^{-1}$)</td>
<td>0.54 ± 0.01</td>
<td>1.10 ± 0.14</td>
</tr>
<tr>
<td>BP_{PP}-BOD ($n=3$)</td>
<td>Drop-coat (10 mmol L$^{-1}$)</td>
<td>0.54 ± 0.01</td>
<td>1.26 ± 0.11</td>
</tr>
<tr>
<td>BP_{BOD} ($n=3$)</td>
<td>Unmodified</td>
<td>0.52 ± 0.01</td>
<td>0.34 ± 0.15</td>
</tr>
<tr>
<td>BP_{PLQ}-FADGDH ($n=5$)</td>
<td>One-pot (2 mmol L$^{-1}$)</td>
<td>-0.23 ± 0.01</td>
<td>5.38 ± 0.54</td>
</tr>
<tr>
<td>$\text{BP}_{\text{FADGDH}}$ ($n=2$)</td>
<td>Unmodified</td>
<td>-0.01 ± 0.00</td>
<td>0.002 ± 0.001</td>
</tr>
</tbody>
</table>

a Number of independent buckypaper electrode samples analyzed. b Parameters obtained from the forward sweep of CVs recorded at 0.2 mV s$^{-1}$. c Current obtained at 0.2 V and 0.15 V at BOD and FADGDH electrodes, respectively.
ASSOCIATED CONTENT

Supporting Information. Electronic Supplementary Information (ESI) available: electrode characterization and stability.

AUTHOR INFORMATION

Corresponding Authors

*Email: andrew.gross@univ-grenoble-alpes.fr and serge.cosnier@univ-grenoble-alpes.fr

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

This work was supported by LabEx ARCANE (ANR-11-LABX-0003-01) and ANR-15-JTIC-0002-01. The region Auvergne-Rhône-Alpes is acknowledged for the PhD funding of C. Abreu. The authors would also like to thank the platform Chimie NanoBio ICMG FR 2607 (PCN-ICMG) and PFT “Surfaces Functionalization and Transduction” for providing facilities and PMIEL “Microscopy” for SEM imaging. We are very grateful to Christine Lancelon Pin for assistance with SEM imaging.

REFERENCES

(24) Ravenna, Y.; Xia, L.; Gun, J.; Mikhaylov, A. A.; Medvedev, A. G.; Lev, O.; Alfonta, L.

(25) Narváez Villarrubia, C. W.; Artyushkova, K.; Garcia, S. O.; Atanassov, P. J.

(28) Narvaez Villarrubia, C. W.; Soavi, F.; Santoro, C.; Arbizzani, C.; Serov, A.; Rojas-

(29) Bourourou, M.; Elouarzaki, K.; Holzinger, M.; Agnès, C.; Goff, A. L.; Reverdy-Bruas,

2016, 107, 542–547.

(31) Elouarzaki, K.; Bourourou, M.; Holzinger, M.; Goff, A. L.; Marks, R. S.; Cosnier, S.

Ed. 2016, 55, 3952–3957.

