Oroxylin A analogs exhibited strong inhibitory activities against iNOS-mediated nitric oxide (NO) production

Tuan-Ahn. N. Pham a, Haiyan Che a, Phuong-Thuy T. Phan a, Jae-Won Lee b, Sung-Soo Kim b, Haeil Park a,*

a College of Pharmacy, Kangwon National University, Chunchon 200-701, Republic of Korea
b College of Medicine, Kangwon National University, Chunchon 200-701, Republic of Korea

Abstract

A number of oroxylin A analogs were prepared and evaluated for their inhibitory activities against iNOS-mediated nitric oxide (NO) production from LPS-stimulated BV2 cells. The analogs were synthesized from purchased 2'-hydroxy-4,5,6-trimethoxyacetophenone and aldehydes in 3 steps. Among the tested compounds, several analogs (3b, 3c, 3d, 3f) exhibited strong inhibitory activities. Especially, the analog with 4-nitrophenyl group (3b) showed stronger inhibitory activity (IC50 = 4.73 µM) than that of wogonin (IC50 = 7.80 µM).

Keywords:
Oroxylin A and its analogs
Wogonin
Inhibition of NO production
Anti-inflammatory activity

Oroxylin A (5,7-dihydroxy-6-methoxyflavone) is a plant origin- nated flavone from Scutellaria baicalensis, which has been tradi- tionally used as medicinal herb to improve memory and cognition. Several major components of this herb were isolated and identified as flavones such as wogonin, baicalin, baicalein, oroxylin A and so forth.1,2 Behavior studies have demonstrated that water extract of S. baicalensis exhibited potent anxiolysis in mice without sedative and myorelaxant effects.3 Flavones from S. baicalensis may possess diverse biological activities such as anxiolysis, anticonvulsion, muscle-relaxation and sedative effects due to their binding affinity with benzodiazepine or GABA receptors.4 Recently, oroxylin A was reported to improve attention-deficit hyperactivity disorder (ADHD) related behaviors in spontaneously hypertensive rats.5

Recently wogonin (5,7-dihydroxy-8-methoxyflavone), one of major constituents of S. baicalensis, was reported to possess strong anti-inflammatory activity.6 Wogonin and oroxylin A have similar chemical structures except the position of methoxy group in their structures as shown in Figure 1. The structural difference may result in different biological activities of wogonin and oroxylin A.

Our previous results showed that 6,8-disubstituted chrysin analogs (5,7-dihydroxy-6,8-disubstituted flavones) retained strong inhibitory activities against COX-2 catalyzed PGE2 and iNOS-mediated NO production.7 These results showed that di-substitutions at C6 and C8 of chrysin were tolerable for anti-inflammatory activity. Deletion of the methoxy group at C8 of wogonin produced chrysin, which exhibited significantly reduced anti-inflammatory activity.8,9 These results imply that the C8 methoxy group of wogonin plays very important roles for strong anti-inflammatory activity. Oxylin A also possesses a methoxy group at C6 of its structure. Since the C6 methoxy group of oroxylin A was also expected to contribute for strong anti-inflammatory activity, a number of oroxylin A analogs were prepared and evaluated their inhibitory activities against iNOS-mediated NO production, a major chemical mediator for inflammation.

Oroxylin A and its analogs were synthesized from commercial starting materials in 3 steps. The reaction of 2'-hydroxy-4',5,6'-trimethoxyacetophenone, purchased aldehydes and KOH in methanol yielded the corresponding chalcones in 65%–96% yields. Reaction of chalcones (1a–1i) in iodine/DMSO condition afforded flavones (2a–2i) in 81%–98% yields. Demethylation of flavones (2a–2i) in 48% HBr/AcOH produced oroxylin A (3a) and its analogs (3b–3i) in 36%–97% yields (Scheme 1).10

Inhibition of iNOS mediated NO production from LPS-stimu- lated BV2 cells by oroxylin A analogs was determined according to the published procedure.9 RAW 264.7 cells obtained from American Type Culture Collection were cultured in DMEM supplemented with 10% FBS and 1% CO2 at 37 °C and activated with LPS. Briefly, cells were plated in 96-well plates (2 × 103 cells/well). Oxylin A analog and LPS (200 ng/ml) were added and incubated for 24 h. Cell viability was assessed with MTT assay based on the experimental procedures described previously. All experiments were carried out at least twice and they gave similar results. The inhibitory activities of analogs on iNOS mediated NO production from LPS-stimulated BV-2 cells were estimated and the results are shown in Table 1.

* Corresponding author.
E-mail address: haeilp@kangwon.ac.kr (H. Park).

doi:10.1016/j.bmcl.2012.01.135

© 2012 Published by Elsevier Ltd.
As demonstrated in Table 1, synthetic oroxylin A (3a) exhibited less potent inhibitory activity against iNOS-mediated NO production from LPS-stimulated BV2 cells compared to that of wogonin. However, several analogs (3b, 3c, 3d, 3f) showed equivalent to more potent inhibitory activities than that of wogonin. Mono-substitutions at 4' (3b, 3c), or 3' (3d, 3f) position increased the bioactivities, while mono-substitution at 2' position exhibited significantly reduced bioactivity (3e) compared to those of analogs at 3' (3d) and 4' (3c) positions. Moreover, di-substitutions at 2'/4' (3g) and 3'/4' (3h, 3i) positions resulted in significantly decreased bioactivities regardless of atoms or functional group. Our present results imply that anti-inflammatory activity of oroxylin A is largely dependent on structural modification of B ring. Also the methoxyl group of oroxylin A is essential for strong inhibitory activity since deletion of the methoxyl group resulted in significantly reduced bioactivity as shown in the previous results.8,9

In conclusion, structural modification of oroxylin A provided synthetic oroxylin A analogs possessing strong inhibitory activities against iNOS-mediated NO production from LPS-stimulated BV2 cells. Strong inhibitory activity was observed from the analogs with mono-substitution at 3' or 4' position of oroxylin A regardless of atoms or functional groups. Further SAR study with a large number of analogs possessing diverse functional groups with different electronic and physical parameters is under progress.

Acknowledgments

This work was supported by the grant (2009-0072124: Synthesis of Biologically Active Flavonoids Analogs) from the Korea Science & Engineering Foundation. The authors thank to Pharmacia Research Institute and Central Laboratory of Kangwon National University for the use of analytical instruments and bioassay facilities.

References and notes
