Creative Self-Efficacy: Correlates in Middle and Secondary Students

Ronald A. Beghetto

To cite this article: Ronald A. Beghetto (2006) Creative Self-Efficacy: Correlates in Middle and Secondary Students, Creativity Research Journal, 18:4, 447-457

To link to this article: http://dx.doi.org/10.1207/s15326934crj1804_4

Published online: 08 Jun 2010.
ABSTRACT: This study examined correlates of creative self-efficacy (i.e., self-judgments of creative ability) in middle and secondary students \((N = 1,322) \). Results indicate that students’ mastery- and performance-approach beliefs and teacher feedback on creative ability were positively related to students’ creative self-efficacy. Creative self-efficacy was also linked to student reports of their teachers not listening to them and sometimes feeling that their teachers had given up on them. Students with higher levels of creative self-efficacy were significantly more likely to hold more positive beliefs about their academic abilities in all subject areas and were significantly more likely to indicate that they planned to attend college than students with lower levels of creative self-efficacy. Finally, students with higher levels of creative self-efficacy were significantly more likely to report higher levels of participation in after-school academics and after-school group activities. Implications for creativity research and practice are discussed.

Although creative ability is necessary for creative expression, it is not sufficient. Creative expression, like other forms of behavior, seems to be influenced by self-judgments of one’s ability to generate novel and useful outcomes. These self-judgments, referred to as creative self-efficacy (Tierney & Farmer, 2002), represent an important extension of the more general construct of self-efficacy (Bandura, 1997). Initial work in the area of creative self-efficacy (e.g., Choi, 2004; Laws, 2003; Phelan, 2001; Tierney & Farmer, 2002, 2004) has helped to establish preliminary conceptual and empirical justification for the assertion that creative self-efficacy is related to the effort and intellectual risk taking necessary for creative expression (i.e., the expression of novel and useful ideas, solutions, and products). At this point, however, much remains to be known about the correlates of creative self-efficacy.

Examining students’ creative self-efficacy may prove useful in supporting the long-standing creativity enhancement efforts of educators and creativity researchers (e.g., Feldhusen & Treffinger, 1980; Renzulli & Reis, 1985; Torrance, 1962, 1963, 1987). Specifically, it will be useful to know what motivational factors and classroom experiences are related to students’ creative self-efficacy. In addition, helpful insights can be gained by examining how academic beliefs and behaviors are associated with varying levels of creative self-efficacy. In this way, educators and creativity researchers will be in a better position to understand and address factors related to students’ willingness to develop and express their creative potential.

This study advances the research on creative self-efficacy by examining potential correlates in the perceptions and schooling experiences of middle and secondary students. The study is guided by two objectives. First is to examine the relation among middle and secondary students’ motivational beliefs, classroom perceptions, and their reports of creative self-efficacy. The second objective is to examine potential differences in students’ academic beliefs and participation in after-school activities between students with higher and lower levels of creative self-efficacy.

Correspondence and requests for reprints should be sent to Ronald A. Beghetto, College of Education, 5277 University of Oregon, Eugene, OR 97403. E-mail: beghetto@uoregon.edu
Background

Creative Self-Efficacy

Creative self-efficacy has been defined as “the belief one has the ability to produce creative outcomes” (Tierney & Farmer, 2002, p. 1138). Creative self-efficacy represents an elaboration of Bandura’s (1997, for a review) broader self-efficacy construct. In general, self-efficacy represents a self-judgment of one’s specific capabilities that, in turn, influence activity choice; persistence; effort; and, ultimately, the attainment of a given outcome. With respect to creativity, Bandura recognized a likely relation between self-efficacy and creative behavior:

Creativity constitutes one of the highest forms of human expression. Innovativeness largely involves restructuring and synthesizing knowledge into new ways of thinking and of doing things. It requires a good deal of cognitive facility to override established ways of thinking that impede exploration of novel ideas and search for new knowledge. But above all, innovativeness requires an unshakeable sense of efficacy to persist in creative endeavors … . (p. 239)

Growing empirical evidence has documented direct and reciprocal links between efficacy beliefs and creativity-related outcomes including initiation of and participation in independent projects (Schack, 1989), creative thinking and challenge seeking (Locke, Frederick, Lee, & Bobko, 1984), creativity ratings by supervisors (Tierney & Farmer, 2002), and instructor ratings of students’ classroom-based creative performance (Choi, 2004).

Up to this point, however, creative self-efficacy research primarily has focused on how efficacy beliefs relate to creativity outcomes. A more limited focus has been on antecedent and concomitant correlates of creative efficacy (Schack, 1989; Tierney & Farmer, 2002). Little research has examined potential relations between creative self-efficacy beliefs and the perceptions, beliefs, and schooling experiences of middle and secondary students. Given that students’ academic self-efficacy beliefs have been linked with adaptive achievement behaviors and outcomes (for an overview, see Bandura, 1997; Schunk, 1995), it is worth examining what, if any, relation exists between students’ creative self-efficacy and their motivational beliefs and classroom experiences. In addition, it will be important to examine how varying levels of creative self-efficacy are linked with students’ academic beliefs, aspirations, and behaviors. This study contributes to research on creative self-efficacy by examining these potential relations.

Motivational Beliefs

According to achievement goal theory (for an overview, see Ames, 1992; Ames & Archer, 1988; Midgley, 2002; Urdan 1997), students hold personal goal orientations that serve as the reasons for engaging in or avoiding achievement-related behaviors. These goal orientations also serve as the way in which students define their competence. Students who are focused on demonstrating their ability to others and defining their competence in relation to others are thought to be holding a performance-approach goal orientation, whereas those who primarily want to avoid looking incompetent in front of others are considered to be holding a performance-avoidance goal orientation. Conversely, students with a mastery goal orientation are focused on learning and improvement and defining their competence in relation to their own past performance.

Over the past 2 decades, a great deal of empirical evidence (for recent reviews, see Midgley, 2002; Pintrich & Schunk, 2002) has linked a variety of positive academic and motivational outcomes with students who hold mastery goal orientations. Outcomes have included high levels of effort and engagement, use of adaptive learning strategies, enjoyment of and intrinsic interest in learning, challenge seeking, intellectual risk taking, and persevering in the face of difficulty. Several of these outcomes seem to be associated with creativity. For example, Collins and Amabile (1999) reported that student creativity is linked with high levels of interest, enjoyment, and curiosity—outcomes typically associated with a mastery orientation. Collins and Amabile also reported that creative individuals demonstrate deep task engagement, are intellectual risk takers, and take challenges head-on—again, outcomes typically linked with a mastery orientation.

Conversely, a performance-avoidance orientation has been linked with a host of maladaptive behaviors including cheating, avoiding help when needed, withdrawing effort, and procrastination (Urdan, Ryan, Anderman, & Gheen, 2002; Wolters, 2004). With respect to a performance-approach orientation, a less than clear picture has emerged. For instance, students
holding performance-approach orientations have been found to demonstrate higher levels of academic performance as measured by course grades, but findings are inconsistent with respect to motivational engagement and the use of learning strategies (cf., Harackiewicz, Barron, Pintrich, Elliot, & Thrash, 2002; Wolters, 2004).

With respect to creativity, researchers (Kaplan, Middleton, Urdan, & Midgley, 2002) have documented novelty avoidance occurring in environments that stress performance orientations. Given that novelty avoidance would seem to undermine students’ willingness to express their creativity, it will be important to examine the relation between performance goal orientations and students’ creative self-efficacy beliefs.

Although there are seemingly conceptual and empirical relations between goal orientations and creative self-efficacy beliefs, these relations have not been sufficiently examined. This study attempts to remedy this by investigating the potential relation between students’ motivational beliefs and their creative self-efficacy.

Classroom Experience

Students’ experiences within classrooms are greatly influenced by their perceptions of how teachers relate to them. For students to be willing to take the intellectual risks necessary to express their creativity, teachers must enact classroom practices, policies, and procedures that are supportive of creative expression (Beghetto, 2005; Nickerson, 1999; Tighe, Picariello, & Amabile 2003). Unfortunately, as Runco (2003) noted, although teachers generally value creativity, they seem to not want to see it in their classroom. Indeed, precocious students typically feel ignored, marginalized, and rejected by their teachers and peers (see Adams-Byers, Whitsell, & Moon, 2004; Cickenbeard, 1991; Cramond & Martin, 1987; Gross, 1989). Such findings suggest that the ideas of creative students likely will fall on deaf ears, adding to a feeling of marginalization and abandonment from their teachers.

Much remains to be known about the relation between students’ creative self-efficacy and their perceptions of whether their teachers are willing to listen to them or whether they feel that their teachers have essentially given up on them. This study contributes to the knowledge base by offering an initial examination of such relations. In addition, given that supportive feedback has the potential to boost self-efficacy in general (Bandura, 1997) and creative self-efficacy in particular (Tierney & Farmer, 2002), this study also examines the relation between supportive feedback and students’ creative self-efficacy.

Research Questions

The aim of this study was to examine correlates of creative self-efficacy in middle and secondary students. To this end, the following research questions guided the investigation: What motivational beliefs are related to middle and secondary students’ ratings of creative self-efficacy? How do students’ perceptions of their classroom experience relate to their ratings of creative self-efficacy? Specifically, how is creative self-efficacy influenced by teachers’ telling students they are creative, whether teachers are perceived as listening to students, and whether students sometimes feel that their teachers have given up on them? Finally, to what extent do students with higher levels of creative self-efficacy differ in their academic beliefs, aspirations, and participation in after-school activities as compared to students with lower levels of creative self-efficacy?

Method

Participants

The 1,322 participants were students from two middle schools (n = 697; 53%) and one high school (n = 625; 47%) located in the Pacific Northwest. Students reported their ethnicity as Hispanic–Latino (n = 870; 69%), White (n = 207; 16%), Russian (n = 156; 12%), Asian (n = 16; 1%), and African American (n = 15; 1%). The remaining 4% did not report their ethnicity. The majority of students were boys (n = 668; 51%), spoke a language other than English at home (n = 825; 62%), and had a mean age of 14 (SD = 1.93).

Instruments and Procedures

Data were collected from a paper-and-pencil survey instrument that I designed to elicit perceptions and beliefs of middle and secondary students. Five items on the survey asked students to report their age, gender, ethnicity, grade level, and language spoken at home.
Likert-type items ranging from 1 (not true) to 5 (very true) were used to measure students' creative efficacy, motivational beliefs, classroom experience, and academic beliefs. Students' also were asked to report their average weekly participation in various after-school activities using a 4-point scale ranging from 1 (never) to 4 (every day). School personnel, within each school, administered the survey to students in January of 2005. A Spanish language version of the survey was created for English language learners and completed by 16% (n = 205) of participants in this study. Given the composition of the participants, language spoken at home was carefully examined in the analysis (see the following Results section).

Creative self-efficacy. Three items were used to assess students' creative self-efficacy (α = .86). The items were based on previous work done in the area of creative self-efficacy (as presented by Tierney & Farmer, 2002), definitions of creativity (Plucker, Beghetto, & Dow, 2004), and the concept of self-efficacy (Bandura, 1997). Specifically, items were intended to measure students' beliefs about their ability to generate novel and useful ideas and whether they viewed themselves as having a good imagination. The three items were (a) “I am good at coming up with new ideas,” (b) “I have a lot of good ideas,” and (c) “I have a good imagination.”

Students' motivational beliefs. Items based on and adapted from Midgley et al. (2000) were used to measure students' motivation beliefs. Specifically, students' mastery orientation was assessed with five items representing a focus on learning, understanding, and self-improvement (α = .80). Two items from this scale were (a) “It is important to me that I really understand my classwork,” and (b) “I try to learn something new in all my classes.” Performance-approach orientation consisted of three items that measured students' focus on demonstrating competence and out-performing others (α = .68). The three items from this scale were (a) “I want to get the best grade in the class,” (b) “It is important to me that I look smarter than other students;” and (c) “I want others to think that I am good at my classwork.” Finally, performance-avoidance orientation was assessed by three items aimed at reflecting a focus on avoiding looking incompetent to others. Because the reliability of the scale was so low (α = .54), the performance-avoidance items were not used in the analysis.

Classroom experience. Three items were used to assess students' classroom experience. Given that self-efficacy is thought to be cultivated by ability-related feedback (Bandura, 1997), students' reports of receiving supportive feedback from teachers was measured with the following item: “My teachers have told me that I am very creative.” Finally, the two items developed that were used to measures students' perceptions of their teachers were (a) “My teachers listen to what I have to say,” and (b) “Sometimes I feel like my teachers have given up on me.”

Academic beliefs. Five items were used to measure students' academic beliefs. These items were intended to measure to what extent students believed they would do well in various academic subjects as well as their intention to go to college. For example, two items included (a) “I believe I will do well in math,” and (b) “I plan to go to college.”

After-school activities. Items used to measure participation in after-school activities were adapted from the U.S. Department of Education (2003). The items, representing descriptions of after-school activities, were grouped into three categories and used to measure students' reported frequency of participation in those activities. The after-school academics category included (a) “worked on homework”; (b) “met with a tutor”; and (c) “reading, writing, or science activities that were not homework.” Two activities from the after-school group activities category were (a) “school activities like band, drama, art”; and (b) “practiced or played on a sports team.” Finally, two activities from the passive school activities category were (a) “played video games,” and (b) “hung out with friends.”

Results

Correlates of Creative Self-Efficacy

Hierarchical regression was used to examine correlates of students' creative self-efficacy scores. In the first step, student characteristics were entered. Student characteristics included age (a continuous vari-
able) and two dummy-coded variables representing gender (0 = male, 1 = female) and English language learning status (0 = English spoken at home, 1 = language other than English spoken at home). In the second step, students’ personal goal orientations (i.e., mastery orientation and performance-approach orientation) were entered into the model. Finally, in the third step, students’ perceptions of their classroom experience were included. These variables included students’ perceptions of whether their teachers listened to them, had told them they were creative, and whether students’ sometimes felt that their teachers had given up on them. Descriptive statistics and zero-order correlations for the variables used in the analysis are presented in Table 1.

Results of the hierarchical regression are presented in Table 2. Student characteristics, entered in Step 1, explained a statistically significant amount of the variance (3%) in students’ creative self-efficacy: $F(3, 1,318) = 15.08, p < .001$. Creative efficacy scores were positively related to older students ($\beta = .08, p = .005$) but negatively related to female students ($\beta = -.05, p = .048$) and students who spoke a language other than English at home with their parents ($\beta = -.16, p < .001$). Results from Step 2 revealed that including students’ personal goal orientations increased the amount of variance explained by 13%: $F(3, 1,316) = 98.35, p < .001$. Creative self-efficacy was positively related to students who held a mastery orientation ($\beta = .30, p < .001$) and a performance-approach orientation ($\beta = .12, p < .001$). Finally, results from Step 3 indicated that including students’ perceptions of their classroom experience increased the amount of variance explained in students’ creative self-efficacy scores by 9%: $F(3, 1,313) = 51.35, p < .001$. It is interesting to note that when taking into account all other variables in the model, students with higher levels of creative self-efficacy were significantly less likely to report that their teachers listened to them ($\beta = -.07, p = .023$) and significantly more likely to report that they sometimes felt that their teachers had given up on them ($\beta = .06, p = .017$). Of all the variables included in the model, students’ reports of teachers providing feedback on their creativity (i.e., teachers telling them that they were creative) served as the strongest unique predictor of students’ creative self-efficacy ($\beta = .32, p < .001$).

Differences Between High and Low Creative Self-Efficacy

In an effort to examine potential differences between students who have conceptually distinct levels of creative self-efficacy, high and low groups were created using the “categorize” function in SPSS 11. Specifically, participants with creative efficacy scores below the 50th percentile were classified into the low creative efficacy group ($n = 678, M = 2.68, SD = .63$), and those with scores above the 50th percentile were classified into the high creative efficacy group ($n = 644, M = 4.21, SD = .47$). Such categories potentially offer more conceptual clarity when examining relations found between students’ group membership and their academic beliefs and after-school activities.

Potential differences between students in the high and low groups of creative self-efficacy were analyzed using analysis of variance (ANOVA) and multivariate analysis of variance. ANOVA with Bonferroni’s ad-
Justification was used for multivariate post hoc comparisons. Cohen’s d, adjusted for different group sizes (Green, Salkind, & Akey, 2000), was used to measure the effect size for between-group comparisons. The resulting d values were interpreted using the general guidelines of $0.2 = $small, $0.5 = $moderate, and $\geq 0.8 = $large (see Cohen, 1988).

Academic beliefs. Significant multivariate differences were found between the high versus low groups on items measuring academic beliefs: Wilk’s $\Lambda = .87, F(5, 1,257) = 36.9, p < .001$. Table 3 contains the means, standard deviations, p values, and effect sizes for between-group comparisons across each of the items making up the academic beliefs category. ANOVAs for all five items were statistically significant ($p < .001$). Students in the high-creative self-efficacy group were significantly more likely to indicate that they believed they would do well in math, science, reading and language arts, and social studies as compared to students in the low group. In addition, students in the high group were significantly more likely to indicate that they planned to go to college than did students in the low-creative self-efficacy group.

After-school academics. Significant multivariate differences were found between high versus low groups on items measuring participation in after-school academics: Wilk’s $\Lambda = .98, F(3, 1,240) = 6.81, p < .001$. Students in the high group were significantly more likely to indicate that they spent more time working on homework ($p = .001$) and reading, writing, or science activities that were not homework ($p < .001$) than did students in the low-creative self-efficacy group. No differences were found between groups with respect to how often they reported meeting with a tutor ($p = .211$). Table 3 contains the means, standard deviations, p values, and effect sizes for between-group comparisons across each of the items making up the after-school academics category.

After-school group activities. Significant multivariate differences were found between high versus low groups on items measuring participation in after-school group activities: Wilk’s $\Lambda = .97, F(3, 1,234) = 14.37, p < .001$. Table 3 contains the means, standard deviations, p values, and effect sizes for between-group comparisons across each of the items making up the after-school group activities category.
Students in the high-creative self-efficacy group reported significantly higher levels of participation in school activities like band, drama, art (\(p < .001\)); practicing or playing team sports (\(p = .019\)); and involvement in after-school clubs like boy or girl scouts (\(p < .001\)) as compared to students in the low group. Passive after-school activities. No significant multivariate differences were found between high versus low groups on items measuring participation in passive after-school group activities: Wilks’s \(\Lambda = .99\), \(F(3, 1,215) = .29, p = .831\). Table 3 contains the means, standard deviations, \(p\) values, and effect sizes for between-group comparisons across each of the items making up the passive after-school activities category. No significant differences existed between students with higher and lower levels of creative self-efficacy in reports of how frequently they played video games (\(p = .255\)), watched TV or videos (\(p = .787\)), or hung out with friends (\(p = .756\)).

Discussion

The purpose of this study was to examine correlates of creative self-efficacy. Results indicate that girls, English language learners, and younger students reported significantly lower levels of creative self-efficacy than did boys, English speakers, and older students (respectively). In addition, students’ mastery- and performance-approach beliefs and feedback on creative ability from teachers were positively associated with students’ creative self-efficacy. Creative self-efficacy was also related to students’ perceptions that their teachers did not listen to them and sometimes feeling that their teachers had given up on them. Students in the high-creative self-efficacy group were significantly more likely to hold more positive beliefs about their academic abilities in all subject areas and were significantly more likely to indicate that they planned to attend college than students in the low-creative self-efficacy group. Finally, students in the
high-creative self-efficacy group were significantly more likely to report more frequent participation in after-school academics and after-school group activities.

That students’ motivational beliefs were associated with creative self-efficacy is not surprising. As discussed earlier, a mastery goal orientation has been related with outcomes that are associated with creativity. However, prior to this study, the relation between mastery beliefs and creative self-efficacy was speculative. These findings provide initial evidence substantiating the assertion that students focused on learning and self-improvement also see themselves as having a good imagination and capable of generating novel and useful ideas. It is interesting to note that the results also suggest a positive association between a performance-approach orientation (i.e., focusing on outperforming others) and creative self-efficacy. At first blush, these results may seem somewhat contradictory; that is, how might the relation between creative self-efficacy and a focus on learning and self-improvement (mastery orientation) coexist with a focus on demonstrating one’s competence by outperforming others (performance approach)?

Although an earlier “normative view” (Pintrich, 2000) of achievement goal theory portrayed mastery and performance orientations as somewhat antithetical, current conceptions of goal theory have challenged that view. Recent research on goal theory, albeit somewhat contested (cf., Harackiewicz et al., 2002; Midgley, Kaplan, & Middleton, 2001; Wolters, 2004), suggests that a performance-approach orientation can result in adaptive outcomes, and a combination of mastery- and performance-approach goals may represent an optimal pattern in some instances. This study provides initial evidence for an optimal “additive pattern” (K. E. Barron & Harackiewicz, 2001) in which mastery and performance orientations have a unique, positive relation with creative self-efficacy.

The presence of an additive pattern of motivational beliefs also helps clarify previous research on the relation between creativity and competition. For instance, Amabile (1996) reported that although win–lose competitions may undermine creativity, there is also evidence suggesting that competitions can have a positive effect on creativity for some individuals and work teams. The findings from this study suggest that a focus on demonstrating competence and outperforming others when coupled with a focus on learning and self-improvement may help protect creativity from potentially detrimental effects of competition. At this point, however, such assertions warrant further empirical investigation.

With respect to teacher-related influences on creative self-efficacy, the results of this study suggest that teachers can boost students’ creative self-efficacy by providing supportive feedback. This finding offers additional substantiation for the assertion that efficacy beliefs are related to ability-related feedback from authority figures (Bandura, 1997; Tierney & Farmer, 2002). The link between creative ability-related feedback and creative self-efficacy has potentially important implications for educators and researchers interested in developing creativity-enhancing educational environments. However, it will be important in subsequent investigations to examine and identify for whom and under what conditions such feedback boosts creative efficacy and performance. This seems particularly important for female students, English language learners, and younger students.

In addition to helping substantiate a relation between creative ability-related feedback and creative self-efficacy, the findings of this study offer additional evidence for claims that creatively inclined students are more likely to feel unheard and sometimes given-up on by their teachers. However, given that creative self-efficacy was also associated with students’ positive academic beliefs and after-school behaviors, these results seem to parallel reports of researchers (Beghetto, in press; Sternberg, 2003; Sternberg & Lubart, 1995) who have documented how dissatisfying experiences can serve as a creative and motivational lever.

That dissatisfying experiences can motivate creativity may, in part, explain why students with higher levels of creative self-efficacy were also more likely to be focused on demonstrating their competence by outperforming others. It seems that feelings of marginalization, as long as they are not too overwhelming, fuel students’ goals of not only learning and understanding (mastery orientation) but also outperforming others in the classroom (performance-approach orientation). Perhaps because these students feel like they are somewhat invisible to their teachers, they are motivated to outperform others so as to be recognized by their teachers. Indeed, F. Barron (1997) explained that as long as experiences of dissatisfaction are not too overwhelming, they can be transcended and capitalized on.
The findings of this study also demonstrate that students with higher levels of creative self-efficacy are more likely to be engaged in organized social activities and no more or less likely to spend time playing video games, watching TV, or hanging out with friends. These findings offer further evidence in refutation of persistent myths that creatively inclined individuals are isolated loners (for an overview, see Plucker et al., 2004). It seems that although creatively efficacious students reported dissatisfying experiences in relation to their teachers, they have more frequent connections with potentially supportive social networks in the form of organized groups, teams, and clubs.

However, just because creatively efficacious students reported positive self-beliefs and behaviors does not mean that researchers and educators can ignore students’ reports of marginalization in the classroom. Indeed, there is a dark side to prolonged marginalization of students by teachers. For instance, researchers (Seeley, 1993) have reported how chronic marginalization of otherwise highly able students can lead to underperformance, disaffection with schooling, disengagement, and dropping out.

Teacher educators and creativity researchers have an opportunity and responsibility to address and better understand the negative schooling experiences of creatively efficacious students. For example, because there is evidence that many teachers devalue or fail to see the importance in supporting student creativity (Beghetto, in press; Fasko, 2001), teacher educators can work toward preventing the marginalization of student creativity in classrooms by helping prospective teachers examine how their beliefs and practices influence students’ confidence in and willingness to express their creativity. However, for such efforts to be successful, creativity researchers will need to work in collaboration with teacher educators to focus their efforts on cultivating creativity supportive dispositions and practices in prospective teachers. In this way, researchers and educators can help ensure that creativity is valued and cultivated.

Conclusions and inferences drawn from this study should be viewed in light of a few important limitations. First, the data used in this study were drawn from an extant dataset and included items beyond the scope of this study (e.g., items measuring students’ perceptions of safety). In addition, all data were based on students’ self-reports and, therefore, may be affected by shared method variance. The study was also limited by the use of scales consisting of only a few items. For instance, the creative self-efficacy scale was based on three items. Although the alpha for this scale was adequate, subsequent research should be aimed at developing a longer and more comprehensive measure of creative self-efficacy. Subsequent studies will also need to sample from a more diverse population of schools; address any potential affects of shared method variance; and include variables measuring additional classroom, school, and home factors. Follow-up studies using better specified methods and measures will be necessary to verify the consistency, adequacy, and generalizability of these findings and the assertions based on these findings.

Finally, subsequent investigations should be aimed at elaborating on the findings of this study. For instance, it will be important to measure and examine the accuracy of students’ creative self-efficacy and what factors influence the accuracy of those self-beliefs. Also, longitudinal and cross-sectional studies will be useful in examining the stability of creative efficacy beliefs and whether and to what extent such beliefs are domain specific or generalize across domains. The use of mixed qualitative and quantitative methods will help provide fine-grained idiographic narratives of creative self-efficacy while at the same time establishing a broader understanding of creative self-efficacy in students.

References

