Lesions of the Broad Ligament: A Review

Debra S. Heller, MD*

From the Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey.

ABSTRACT

The differential diagnosis of lesions arising in the broad ligament is quite large. Many of these lesions can be clinically interpreted before surgery as adnexal or uterine neoplasms. Although some lesions are similar to those arising in other müllerian sites, there are unique lesions as well. The lesions are uncommon and may prove challenging to clinicians. The purpose was to review the scope of lesions affecting the broad ligament. A literature review was conducted. A Medline search was performed using the terms broad ligament, mesosalpinx, and mesovarium. A review of the scope of broad ligament lesions is presented to assist in developing a differential diagnosis if a patient with such a lesion is encountered. Journal of Minimally Invasive Gynecology (2015) 22, 1163–1168 © 2015 AAGL. All rights reserved.

Keywords: Broad ligament; Female genital tract; Uterine neoplasms

Embryology, Anatomy, and Histology

The broad ligament is a fold of peritoneum that drapes over the uterus and fallopian tubes. It has 3 components: the mesovarium; the mesosalpinx; and the portion below the adnexa, the mesometrium, which is referred to as the broad ligament in common usage. The broad ligament contains many structures, including vessels, the uterine arteries, the round ligaments, a portion of the ureters, the utero-ovarian ligament medially and suspensory ligament of the ovary laterally, cardinal ligaments laterally, and uterosacral ligaments posteriorly.

Embryonic rests are normal components of the broad ligament and may give rise to some of the neoplasms that can occur there. Mesonephric (Wolffian) duct remnants may be seen in tissue adjacent to the fallopian tube, sometimes invested in muscle (Fig. 1).

Paramesonephric (müllerian) remnants may also be present in the broad ligament near the ovary [1] (Fig. 2). In addition, heterotopic hilar cell clusters as well as adrenal cortical rests (Fig. 3) may be incidental findings in the broad ligament, often in a paratubal location [2].

Broad Ligament Defects

Defects in the broad ligament may permit the small bowel, colon, adnexa, or ureter to pass through with subsequent strangulation although this is uncommon [3–5]. Defects may be congenital or acquired and may involve 1 leaf, both leaves with a through and through defect, or an outpouching of the intact peritoneum [5]. The Masters Allen (or Allen Masters) syndrome refers to traumatic laceration of the posterior leaf of the broad ligament, often after

* Corresponding author: Debra S. Heller, MD, Department of Pathology-UH/ E158, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103.
E-mail: hellerds@njms.rutgers.edu

Submitted May 27, 2015. Accepted for publication June 21, 2015.
Available at www.sciencedirect.com and www.jmig.org

1553-4650/ - see front matter © 2015 AAGL. All rights reserved.
http://dx.doi.org/10.1016/j.jmig.2015.06.019
childbirth, and is associated with an abnormally mobile cervix. It may cause pelvic pain and dyspareunia [6]. In 1 case, Masters Allen syndrome presented with signs suggestive of acute peritonitis [6]. It has been suggested that this peritoneal tear may permit development of deep infiltrating endometriosis [7]. It has also been argued that underlying endometriosis rather than pregnancy is the etiology of the acquired defect [8].

Hemorrhagic Lesions of the Broad Ligament

Pregnancy is a time of increased risk for the broad ligament. Hemoperitoneum has been reported after rupture of a broad ligament varix [9] as well as with rupture of the broad ligament and uterine vessels [10]. A spontaneous broad ligament hematoma has also been reported in the absence of pregnancy; it was attributed to venous injury associated with the combination of large uterine myomas and the exertion of mowing a lawn [11].

Benign Tumors and Tumorlike Lesions

Intraligamentous Pregnancy

Ectopic pregnancy arising in the broad ligament is rare and is usually associated with pregnancy loss and maternal hemorrhage although a rare viable pregnancy has been reported [12]. The authors postulated that the pregnancy was originally a tubal ectopic pregnancy that had ruptured and reimplanted in the broad ligament. A case in a woman who underwent in vitro fertilization after 2 prior ectopic pregnancies had resulted in bilateral salpingectomies was postulated to have arisen either by rupture of the uterus during the in vitro fertilization procedure or recanalization of the fallopian tube stump [13].

Rare cases of uterine rupture with expulsion of the fetus into the broad ligament have been reported; Dhont et al [14] report a case in which a second trimester termination using prostaglandins was complicated by this occurrence.

Broad Ligament Cysts

Cysts of the broad ligament may be of a mesonephric or paramesonephric origin with epithelium similar to that described for the corresponding remnants or a mesothelial origin. Most of these cysts are paramesonephric (müllerian) [15]. Paratubal/paraovarian broad ligament cysts represent about 10% of adnexal masses [16]. The distinction between paratubal and paraovarian is sometimes arbitrary with interchangeable usage, and these cysts are present in the broad ligament between the tube and ovary. In terms of distinguishing cysts from rests, which can be dilated, cysts have been described as grossly visible lesions [1]. Most of these cysts are incidental findings, but they may tors with an
accompanying tube or ovary, rupture, or undergo hemorrhage [16]. In addition, epithelial neoplasms may arise in paramesonephric cysts with the same multipotentiality of müllerian epithelium elsewhere, giving rise to benign, borderline, and malignant epithelial neoplasms that usually arise in the ovary.

Leiomyoma of the Broad Ligament

The most common broad ligament neoplasm is a leiomyoma [17], with similar presentation to the uterine counterpart. Rarely, pseudo-Meigs syndrome has occurred [18]. A variant, leiomyomatosis, with over 400 small smooth muscle nodules confined to the broad ligament has also been reported [19]. Angioleiomyomas, a benign tumor of smooth muscle and vessels, may be a variant or may be similar to the soft tissue neoplasms arising elsewhere, and these have occasionally occurred in the broad ligament as well [20].

Mimics of leiomyoma that can arise in the broad ligament include extragastrointestinal stromal tumors and perivascular epithelioid tumors. Both of these are tumors of uncertain malignant potential, which can histologically mimic leiomyomas but are positive for c-Kit and DOG-1 for extragastrointestinal stromal tumors [21] and HMB45 for perivascular epithelioid tumors [22]. These immunostains help distinguish these lesions from the much more common leiomyoma, which would be negative for these stains but stain for smooth muscle markers.

Adenomyomas may also occur and should not be mistaken for adenosarcomas because of overinterpretation of malignancy of the endometrial stroma surrounding the glands [17]. An extremely rare mimic of a parasitic leiomyoma in endemic areas is a calcified guinea worm [23].

Other Rare Benign Tumorlike Lesions and Neoplasms

The broad ligament is a common site for endometriotic implants; however, rarely, endometriosis may actually form a tumor mass in the broad ligament [24].

Several cases of papillary serous cystadenoma, highly but not always associated with von Hippel–Lindau disease, have been reported [25] and may be the first indication of the condition [17]. In addition to the association with von Hippel–Lindau disease, it is important to be aware that the histology of papillary serous cystadenoma can be confused with clear cell renal cell carcinoma. An immunohistochemical panel will help distinguish the 2; clear cell papillary cystadenomas are more likely to stain for cytokeratin 7 and be negative for renal cell carcinoma antigen RCC and CD10, whereas the opposite is true for renal cell carcinomas [26]. However, immunohistochemical as well as phenotypic overlap has been shown with papillary cystadenoma and clear cell papillary renal cell carcinoma, which is a different variant of renal cell carcinoma than clear cell carcinoma [27]. Benign cystic teratoma has occurred in the broad ligament and in 1 case herniated through the greater sciatic foramen, presenting as a gluteal mass [28]. A variety of other unusual lesions such as Brenner tumors and fibrothecomas have been reported in the broad ligament [29,30]. Osseous metaplasia has been reported to be able to form nodules in the mesosalpinx [31]. Placental site nodules, usually observed in the endometrium, have also been reported in the broad ligament near the fallopian tube, where it may be a marker for a subinvolved and unsuspected prior ectopic pregnancy [32].

A rare case of an oncocytic adrenal cortical adenoma arising in an adrenal rest of the broad ligament was reported [33]. Pheochromocytoma, a usually benign neoplasm generally arising in the adrenal, has also occurred in the broad ligament, presenting with abnormal urinary catecholamines and hypertension [34].

A uteruslike mass composed of smooth muscle with an endometrial-lined cavity is a rare occurrence in the ovary but has also been reported in the broad ligament [35]. The lesion presents with pelvic or abdominal pain, which may be cyclic. Histogenesis is unclear, but theories have included congenital anomaly of the müllerian ducts, metaplasia, and heterotopia [35].

Hydatid disease has been reported in the broad ligament and ovary of a child [36] as well as an adult [37], and echinococcosis is something to consider in the differential of patients from endemic areas. Müllarianosis, the presence of mixed endometrioid, serous (tubal), and/or endocervical benign glands of the müllerian system, has been reported in a variety of locations. Müllarianosis has also been reported in the mesosalpinx [38], comprised mainly of endocervical glands with some tubal epithelium. The lesion occurred, as it frequently does, in association with borderline ovarian neoplasms, and the authors stress the importance of not interpreting the finding as metastatic.

Malignant Neoplasms

Primary malignancies of the broad ligament are defined as tumors in the broad ligament completely separate from the uterus, ipsilateral tube, and ovary [39].

Female Adnexal Tumor of Probable Wolffian Origin

This neoplasm is uncommon but usually arises in the broad ligament. Female adnexal tumor of probable Wolffian origin (FATWO) occurs over a wide age range and presents as solid and cystic masses that can be small, but some have been up to 25 cm [40]. They have a variety of histologic patterns, but the most recognizable is sievelike (Fig. 4). A helpful finding is staining with c-Kit (CD117). Although most of these lesions do not metastasize, they are capable of aggressive behavior. A potential rare mimic that can arise in the broad ligament is a granulosa cell tumor. Although inhibin is a significant marker for granulosa cell tumors, there can be overlap of this and other markers in FATWO, and the finding of nuclear grooves would favor a granulosa cell tumor [41].
Epithelial Malignancies

Müllerian-derived malignancies including mucinous, serous, clear cell, and endometrioid carcinoma; borderline tumors; and endometrial stromal sarcoma have arisen in the broad ligament, sometimes in association with endometriosis [40,42,43] although some authors postulate that these neoplasms can arise in müllerian remnants [44]. A malignant mixed müllerian tumor has also been reported [45]. Theories reviewed by Aslani et al [43] for the derivation of a serous borderline tumor in this location included invaginated fallopian tube epithelium, müllerian remnant, or mesothelial origin. A paratubal transitional cell carcinoma was speculated to have arisen from a Walthard cell rest, paratubal cyst, or tubal serosa [46].

Other Rare Malignancies and Tumors of Uncertain Potential

Sex cord stromal tumors have occurred in the broad ligament, including granulosa cell tumors [41] and steroid cell tumors. A case of a steroid cell tumor, a sex cord stromal tumor of low malignant potential, was reported in the broad ligament of an 11-year-old female who had associated virilization [47], and 1 in an adult, also masculinized, had evidence histologically of arising in an accessory ovary in the broad ligament [48]. A carcinoid tumor has been reported [49]. A few cases of extrasplinal ependymoma have arisen in the broad ligament [50]. In the central nervous system, ependymoma is considered a low-grade malignancy with recurrence and rare metastatic potential, but the number of broad ligament cases is too rare to prognosticate. In the literature review of Matsuyama et al [50], they found 3 cases with initial dissemination although they were tumor free up to 27 months after surgery, 1 case that developed spread many years after initial surgery, and 2 with no documented spread [50]. A solitary fibrous tumor has arisen in the broad ligament [51]. Ewing sarcoma has occurred in the broad ligament [52]. Because this raises the large differential of small round blue cell tumors, cytogenetics and immunohistochemistry are important in making the diagnosis. It is important for clinicians to be aware that unusual tumors may need to be submitted to their pathology department fresh so that cytogenetics can be performed although polymerase chain reaction and fluorescence in situ hybridization modalities may have use in some tumors and can be performed after fixation.

Another example of the usefulness of genetic analysis was a case of choriocarcinoma in the fallopian tube and broad ligament of a young adult patient with a recent pregnancy. Although it was initially believed that the choriocarcinoma was gestational, DNA genotyping matching normal patient tissue proved that the lesion was nongestational choriocarcinoma of a germ cell origin, which has therapeutic and prognostic significance [53]. Gestational choriocarcinoma has also occurred in the broad ligament, presumably from an ectopic pregnancy in that location [54]. More unusual forms of gestational trophoblastic disease have also occurred in the broad ligament. A case of an epithelioid trophoblastic tumor in the broad ligament of a 41-year-old woman who had been treated 10 years earlier for gestational trophoblastic disease was reported [55].

Other rare malignancies have included undifferentiated pleomorphic sarcoma [56], malignant fibrous histiocytoma [57], and leiomyosarcoma [58]. In 1 case, broad ligament leiomyosarcoma metastasized to the pancreas [59]. It has been suggested that the criteria for malignancy in a broad ligament leiomyosarcoma is that of soft tissue, not the uterus [17]. Uterine leiomyosarcoma has also spread to the vessels of the broad ligament in a pattern that mimics intravenous leiomyomatosis, and the authors termed this condition intravenous leiomyosarcomatosis [60].
Conclusions

The broad ligament can show a wide range of pathology. Preoperatively, these lesions may be thought to arise in the adnexa or uterus. At laparoscopy, because many of the lesions arise between the leaves of the broad ligament, they may be similar in appearance (Fig. 5) although preoperative imaging may be helpful in establishing a differential diagnosis. Broad ligament masses may be amenable to laparoscopic excision. In 1 case of broad ligament leiomyoma, the broad ligament was opened, and the leiomyoma was morcellated [1]. Knowledge of the potential for the range of lesions of the region will be helpful if such a patient is encountered and may allow for planning minimally invasive surgical interventions.

References


