Reconstitution of Low-Density Lipoproteins with Fatty Acids for the Targeted Delivery of Drugs into Cancer Cells

Chunlei Zhu, Pallab Pradhan, Da Huo, Jiajia Xue, Song Shen, Krishnendu Roy, and Younan Xia*

Abstract: Low-density lipoproteins (LDLs) are a class of nanocarriers for the targeted delivery of therapeutics into aberrant cells that overexpress the LDL receptor. A facile procedure is used for reconstituting the hydrophobic core of LDLs with a binary fatty acid mixture. Facilitated by the tumor targeting capability of the apolipoprotein, the reconstituted, drug-loaded LDLs can effectively target cancer cells that overexpress the LDL receptor while showing minor adverse impact on normal fibroblasts. According to a hypothesized mechanism, the reconstituted LDLs can also enable metabolism-triggered drug release while preventing the payloads from lysosomal degradation. This study demonstrates that LDLs reconstructed with fatty acids hold great promise to serve as effective and versatile nanocarriers for targeted cancer therapy.

Low-density lipoproteins (LDLs) have been explored as a novel class of nanocarriers for targeted delivery of imaging contrast agents and therapeutic payloads into aberrant cells owing to their small sizes (<50 nm), biodegradability, and long blood circulation time (2–4 days). Structurally, each LDL has a unique, well-defined architecture constructed from an amphiphilic phospholipid monolayer and a hydrophobic core comprised of more than 45 wt% cholesteryl ester. Its surface is decorated by an apolipoprotein B-100 macromolecule that can be specifically recognized by the LDL receptor. Upon binding between apolipoprotein B-100 and the receptor, endocytosis will be triggered to attain cholesterol intake. In contrast with normal tissues, the LDL receptor is up-regulated in many types of malignant cells or tissues. This unique feature allows LDLs to serve as a class of natural nanocarriers for tumor-targeted drug delivery.

Currently, three strategies have been developed to introduce payloads into LDLs, including non-covalent intercalation into the phospholipid monolayer, encapsulation in the hydrophobic core, and covalent conjugation with the apolipoprotein. Encapsulation in the core is particularly well-suited for drug delivery because of the simple procedure and relatively large loading capacity. The encapsulation process typically involves core reconstitution that uses a non-polar organic solvent to extract the hydrophobic lipids and subsequently refills the resultant void spaces with a mixture of cholesterol esters and drugs or cholesterol–drug conjugates. However, the presence of excess cholesterol in the bloodstream greatly increases the risk of forming atherosclerotic plaques in the aortic vasculature, which may cause fatal diseases such as myocardial infarction and stroke. Therefore, the cholesterol/cholesteryl ester formulation should be avoided and preferably replaced with other naturally occurring compounds.

Fatty acids, an important source of stored energy in living organisms, have been exploited as a class of promising biomaterials owing to their biocompatibility and biodegradability. In the present study, we used a mixture of fatty acids as the hydrophobic matrix to reconstitute the native LDLs through a core-loading approach (Figure 1a). Differential scanning calorimetry (DSC) was used to measure the melting points of mixtures derived from lauric acid (m.p. = 45°C) and stearic acid (m.p. = 69°C). At a weight ratio of 4:1, we...
obtained a eutectic mixture with a sharp melting point at 39°C (Figure 1b), which is slightly higher than the normal human body temperature (37°C). As such, the payloads can be effectively encapsulated without prominent leakage until being triggered for release at the target site. It is worth noting that lauric acid has a favorable effect on the increase of “good” blood cholesterol (high-density lipoprotein), whereas stearic acid enables the decrease of “bad” blood cholesterol (LDL).[7] As such, these naturally occurring compounds can be considered as safe materials for the substitution of cholesterol ester in LDL reconstitution. We then adopted the Krieger’s method with minor modifications to reconstruct the core of native LDLs.[9] Specifically, the endogenous core lipids were extracted and then replaced with the eutectic mixture of lauric acid and stearic acid. Our quantitative analysis indicates that about 50 wt% of the total cholesterol (including free cholesterol and cholesteryl ester) could be removed using this method, providing adequate spaces for subsequent core loading (Supporting Information, Table S1).

The structural stability of LDLs before and after reconstitution was also confirmed by UV/Vis and circular dichroism (CD) spectra (Supporting Information, Figure S1). The characteristic absorption peak of apolipoprotein B-100 at 280 nm and the unique spectrum of a primarily α-helical protein with a negative peak at ca. 210 nm were both preserved,[9] indicating that the reconstitution process did not alter the structure of apolipoprotein B-100. The payloads, together with the binary fatty acids, were then core-loaded into the LDLs. Under ambient conditions, the fatty acids became solidified, facilitating the entrapment of the payloads in the matrix. Since the hydrophobic cavity of native LDLs prefers to accommodate hydrophobic substances, the loading mechanism is supposed to be the hydrophobic interactions between fatty acids and the payloads.

The morphology and integrity of the resultant rLDLs were examined using transmission electron microscopy (TEM). Both C6-reconstituted LDLs (C6-LDLs) and DOX-reconstituted LDLs (DOX-LDLs) exhibited good dispersity and a spherical shape essentially identical to those of native LDLs, suggesting that the reconstitution process only had a negligible impact on the morphology of the initial template (Figure 1c–e). We further quantified the size distribution of the resultant particles. Relative to native LDLs, the rLDLs were slightly enlarged in size (Supporting Information, Figure S2). Meanwhile, a somewhat broader distribution in size was found for DOX-LDLs. The slight increase in particle size can be attributed to the overloading of fatty acids, as well as the difference in molecular stacking between fatty acids and cholesteryl esters. The UV/Vis spectra shown in the Supporting Information, Figure S3 confirm the presence of C6 and DOX, demonstrating that the payloads had been successfully loaded into the rLDLs. Further quantification indicates that the average numbers of C6, DOX, lauric acid, and stearic acid contained in each LDL particle were 10 ± 1, 73 ± 7, and 241 ± 13, respectively (Supporting Information, Table S2). Compared to C6, the loading capacity of DOX in the rLDLs was higher, which can be attributed to a stronger interaction between DOX and the fatty acids according to the principle of “like dissolves like”.

We next studied the difference in receptor-mediated uptake of C6-LDLs between cancerous and normal cells. An in vitro assay was performed using A549 lung cancer cells and NIH-3T3 fibroblast cells that overexpress and moderately express the LDL receptor, respectively.[10] After incubation for 3 h, we observed a substantial accumulation of C6-LDLs inside the A549 cells (Figure 2a). The overlay image demonstrates that most C6-LDLs were co-localized with Lysotracker (late endosome/lysosome marker), suggesting that the particles entered cells via an endocytic pathway. The punctate green fluorescence in the periphery of the cells can be ascribed to the newly bounded C6-LDLs or early internalization events. In comparison, the fluorescence intensity of C6 in NIH-3T3 cells was much weaker than that in A549 cells (Figure 2b). Moreover, the fluorescence signals could only be detected around the edge of the cell rather than the cytoplasm because of the relatively slow internalization and/or non-specific binding.

To verify that the internalization process was primarily mediated by the LDL receptor, we investigated the uptake of C6-LDLs in the presence of 20-fold excess of native LDLs (Figure 2c and d). Receptor blocking greatly decreased the uptake of C6-LDLs in both A549 and NIH-3T3 cells, with barely noticeable fluorescence in the cytoplasm. To quantify the differential receptor-mediated uptake in both cell lines,
flow cytometric analysis was performed. As shown in Figure 2e and f, there was a more pronounced peak shift for A549 cells than NIH-3T3 cells after incubation with C6-LDLs, indicating the targeting selectivity of rLDLs toward cancer cells over normal cells. In the presence of 20-fold excess of native LDLs, the population of both A549 and NIH-3T3 cells substantially shifted toward the direction with low fluorescence intensities. Further quantification indicates that after receptor blocking, there was 60-fold and 3-fold decrease in mean fluorescence intensity for A549 and NIH-3T3 cells, respectively (Supporting Information, Figure S4). The data confirm that the rLDLs maintain the biological functions of native LDLs and still have a preferential affinity toward cancer cells that overexpress the LDL receptor.

We then investigated the intracellular drug delivery using DOX-LDLs. As shown in Figure 3a and b, the A549 cells exhibited punctate red fluorescence, whereas the fluorescence signal was barely detected from the NIH-3T3 cells. This finding further confirms the higher affinity of DOX-LDLs toward cancer cells. It is worth noting that the fluorescence signals of DOX in some A549 cells were overlaid with the nuclei rather than being clustered in the cytoplasm, indicating the translocation of DOX into the nuclei. After internalization, the DOX-LDLs would be transported to the endo/lysosomes. Since fatty acids cannot be hydrolyzed, the therapeutic drugs are supposed to be protected from lysosomal degradation. However, cancer cells have an elevated energy demand to maintain rapid proliferation.[11] This, in turn, triggers the release of the fatty acids and payloads. Over time, the released DOX intercalates into the deoxyribonucleic acids (rich in the nuclei) to inhibit the proliferation of cancer cells.

We then measured the release profile of DOX from the DOX-LDLs in phosphate buffered saline. As shown in the Supporting Information, Figure S5, the DOX exhibited a limited and sustained release behavior over 24 h. We hypothesized that both the phospholipid shell and the fatty acid core could act as a physical barrier to slow down the drug release. To quantitatively evaluate the target toxicity of DOX-LDLs, we performed cell viability analyses. Figure 3c shows the dose-dependent growth inhibition of the DOX-LDLs on A549 cells. As the concentration of DOX-LDLs increased, the cell viability decreased significantly. When the concentration of DOX in DOX-LDLs reached 3.6 μM, the inhibitory rate was as high as 98%. The IC50 value was determined to be 2.3 μM, which was much lower than that of free DOX (14.6 μM), indicating the efficacy of the proposed metabolism-triggered drug release (Supporting Information, Figure S6). In contrast, NIH-3T3 cells exhibited a resistance to DOX-LDLs under all tested concentrations as a result of the limited uptake of the rLDLs. Even for the group with the highest amount of DOX, NIH-3T3 cells still showed a survival rate of over 70%.

We have also sought to simplify the delivery system by using just one of the fatty acids. However, the LDLs reconstituted from either lauric acid or stearic acid could not efficiently trap the DOX molecules owing to the high crystallinity associated with single-component fatty acid, which results in drug efflux during solvent evaporation (Supporting Information, Table S3). The binary fatty acid mixture could reduce the crystallinity of the system and thus keep drugs in the solid matrix. Furthermore, even under the same DOX concentrations, both lauric acid and stearic acid exhibited less prominent cytotoxicity against A549 cells, which is probably due to the ineffective drug release from a solid matrix with an elevated melting point (Supporting Information, Figure S7). Taken together, it is necessary to manipulate the thermal properties of fatty acids to facilitate rapid and efficient drug release.

To verify the LDL receptor-mediated cytotoxicity, we conducted a receptor blocking assay with 20-fold excess of native LDLs. As shown in Figure 3d, the competitive binding remarkably suppressed the cytotoxicity of DOX-LDLs toward A549 cells, and the cell viability was recovered to the same level as that of excess LDLs alone. However, we did not observe any increased survival rate for the blocking group of NIH-3T3 cells. Conversely, the excess LDLs and cytotoxic DOX-LDLs imposed a concerted inhibitory effect on the viability of NIH-3T3 cells. The cell survival condition was also examined using inverted optical microscopy (Supporting Information, Figure S8). For the group incubated with DOX-LDLs, A549 cells exhibited an apoptotic phenotype with a highly shrunk and rounded shape. Receptor blocking with excess LDLs greatly rescued the cells to a healthy living status. As for NIH-3T3 cells, no obvious cell apoptosis was found for all groups, suggesting that the internalized DOX molecules were not enough to initiate noticeable cytotoxicity.

We also evaluated in vivo accumulation of the fatty acid-reconstituted LDLs in B16-F10 melanoma-bearing mice as the LDL receptor is known to be upregulated in melanoma cells.[12] We first confirmed the receptor-mediated uptake of the rLDLs using B16-F10 murine melanoma cells in vitro (Supporting Information, Figure S9). To facilitate in vivo
solid tumors, and co-injection of IR780-LDLs and 20-fold excess of native LDLs significantly reduced their enrichment at these sites. We further quantified the average radiant efficiency (ARI) in these tumors. As shown in Figure 4b, receptor blocking by excess LDLs resulted in a 2.2-fold decrease in ARI, indicating that the receptor-mediated endocytosis probably plays a primary role in the uptake of these nanoparticles. The distribution of IR780-LDLs in major organs was also examined (Supporting Information, Figure S10). Since the B16-F10 melanoma has a black color, both the excitation light and fluorescence signals of IR780 were greatly attenuated owing to its self-absorption. As such, it is difficult to make parallel comparison between the major organs and the tumor based on the ARI. Nevertheless, the data shown in Figure 4 suggest that the biological functions of rLDL were maintained and the rLDLs can be used to target tumors that overexpress the LDL receptor.

In summary, LDLs reconstituted from a binary fatty acid mixture have been developed as a biocompatible, tumor-targeting nanocarrier for the delivery of both imaging contrast agents and anticancer drugs. The reconstitution process has essentially no impact on the morphology and biological functions of LDLs. In terms of using fatty acid as a matrix for drug loading, there are a number of advantages. First, fatty acids are naturally occurring biomolecules, indicating good biocompatibility and biodegradability. Second, fatty acids are an important class of fuel source. Since the rapidly proliferating cancer cells have a higher demand on energy, we hypothesize that the metabolism-triggered drug release will be augmented. Third, all molecules transported to lysosomes are inevitably hydrolyzed into reusable small units. Fatty acids, the smallest units in lysosomes, are supposed to protect the payloads from hydrolysis and thus facilitate endolysosomal escape. All these features contribute to the rapid and effective cytotoxicity toward cancer cells, making the fatty acid-reconstituted LDLs a promising nanocarrier for targeted cancer therapy.

Acknowledgements
This work was supported in part by a grant from the National Institutes of Health (R01 CA138527) and startup funds from the Georgia Institute of Technology (to Y.X. and K.R.).

Conflict of interest
The authors declare no conflict of interest.

Keywords: cancer therapy · drug delivery · eutectic mixtures · fatty acids · low-density lipoproteins

How to cite: Angew. Chem. Int. Ed. 2017, 56, 10399–10402
Angew. Chem. 2017, 129, 10353–10358


