TECHNICAL CONTRIBUTION

Length-weight relationships for three zoarcoid fish species from the coastal waters of the northern Yellow Sea, China

G.-J. Yang1,* | L. Song2,* | Z.-X. Wu3,*

1College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
2Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
3College of Fisheries, Guangdong Ocean University, Zhanjiang, China

Correspondence
Zhongxin Wu, College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
Email: wuzhongxin2007@126.com

Funding information
Association of Marine Affairs, Grant/Award Number: CAMAZDA201605; Liaoning Province Ocean and Fishery Hall, Grant/Award Number: 201611

Summary
Length–weight relationships (LWRs) were determined for three zoarcoid fish species: Zoarces elongatus Kner, 1868, Pholis fangi (Wang & Wang, 1935) and Chirolophis japonicus Herzenstein, 1890. Samples were collected from the coastal waters of the northern Yellow Sea (near Dalian City) using bottom trawl nets (20 mm stretched mesh size in the cod-end) for Zoarces elongatus and Pholis fangi and set gill nets (mesh size 15.6 mm) for Chirolophis japonicus. Samples were taken from mid-March to early April 2017. Parameter b values in the fitted LWRs were 3.119, 3.440 and 3.423 for Zoarces elongatus, Pholis fangi and Chirolophis japonicus, respectively.

INTRODUCTION

The length–weight relationship (LWR) is a critical tool in fishery resources research and management (Froese, 2006; Pauly, 1983). It has been widely used to calculate condition factors (Froese, Tsikliras, & Stergiou, 2011; Petrakis & Stergiou, 1995), estimate biomass through length observation (Andrade & Campos, 2002). Moreover, comparing LWRs among different fish species or populations could better gain insight into their life history and morphological characteristics (Gonçalves et al., 1997; Torres, Ramos, & Sobrino, 2012).

The coast sea of the northern Yellow Sea in China has abundant fishery resources, historically being an important fishing ground (Lin, Ning, Su, Lin, & Xu, 2005). However, there is still lack of biological characteristics for some commercially exploited fish species in this

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>Weight (g)</th>
<th>Total length (cm)</th>
<th>a</th>
<th>b</th>
<th>95% CI of a</th>
<th>95% CI of b</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoarces elongatus Kner, 1868</td>
<td>58</td>
<td>14.0-147.0</td>
<td>15.7-32.7</td>
<td>0.0024</td>
<td>3.119</td>
<td>0.0014-0.0041</td>
<td>2.949-3.288</td>
<td>.960</td>
</tr>
<tr>
<td>Pholis fangi (Wang & Wang, 1935)</td>
<td>61</td>
<td>1.0-11.8</td>
<td>8.3-16.8</td>
<td>0.0006</td>
<td>3.440</td>
<td>0.0004-0.0010</td>
<td>3.276-3.605</td>
<td>.967</td>
</tr>
<tr>
<td>Chirolophis japonicus Herzenstein, 1890</td>
<td>48</td>
<td>12.5-175.2</td>
<td>12.8-26.8</td>
<td>0.0024</td>
<td>3.423</td>
<td>0.0016-0.0034</td>
<td>3.295-3.551</td>
<td>.984</td>
</tr>
</tbody>
</table>

N, the number of individuals; Max and Min, the maximum and minimum values of the total length or weight; a and b, the estimated parameter for LWRs; CI, confidence interval; R², determinant coefficient.

*Equal contributors and share first authorship.
area. In the present study, three commercially important zoarcoid fish species: Zoarces elongatus Kner, 1868, Pholis fangi (Wang & Wang, 1935) and Chirolophis japonicus Herzenstein, 1890, are studied to provide the first references for their LWRs.

2 | MATERIALS AND METHODS

Fish samples were collected from the coastal sea of city Dalian, northern Yellow Sea of China (38°49′N, 121°25′E) using bottom trawl nets (20 mm stretched mesh size in the cod-end) for Zoarces elongatus and Pholis fangi and set gill nets (mesh size 15.6 mm) for Chirolophis japonicus from mid-March to early April 2017. Each individual was identified to species level according to the literature (Chen & Zhang, 2015; Froese & Pauly, 2017; Liu, Chen, & Ma, 2015). The total length (TL, cm) and body weight (W, g) were measured to the nearest 0.1 cm and 0.1 g respectively.

The LWR is expressed by the equation: \[W = a \times L^b \], where \(W \) is the body weight, \(L \) is the total length, \(a \) and \(b \) are regression parameters. Parameters \(a \) and \(b \) were estimated by the converted logarithmic expression: \[\log W = \log a + b \log L \], where \(\log a \) represents the regression intercept and \(b \) is the regression slope (Froese, 2006; Ricker, 1973). Additionally, the 95% confidence interval (CI) for parameter \(a \) and \(b \) and the degree of association between \(\log W \) and \(\log L \) (\(R^2 \)) were also determined (Froese, 2006). All statistical analyses were conducted with Excel 2013.

3 | RESULTS

In the present study, a total of 167 individuals from three species were used to determine the LWRs. Descriptive statistics and the estimated length-weight relationship parameters for each species were given in Table 1.

4 | DISCUSSION

A new maximum TL (32.7 cm) for Zoarces elongatus was updated. In contrast, the size range for Chirolophis japonicus covered in this study is limited and included just a bit more than 50% of the known TL maximum (55.0 cm) (Novikov, Sokolovsky, Sokolovskaya, & Yakovlev, 2002). The relative small size range included may be due either to area specific growth limitations or due to mesh size restrictions of the fishing gear used. Further studies should help clarifying the issue and presently the given estimate should be considered as being tentative. Overall, the estimated parameters \(a \) and \(b \) of the equation for the other two species were within or partially overlapping with their corresponding Bayesian range estimates (Froese & Pauly, 2017).

In conclusion, the length-weight relationships presented here provide useful information to convert length data in field fisheries studies.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful comments on this work. This work was financially supported by the Major Projects of China Association of Marine Affairs (No. CAMAZDA201605) and the Liaoning Province Ocean and Fishery Hall (No. 201611). The experiments involved in the text comply with the current laws of China.

ORCID

G.-J. Yang http://orcid.org/0000-0001-9287-8846

Z.-X. Wu http://orcid.org/0000-0002-6412-469X

REFERENCES

How to cite this article: Yang G-J, Song L, Wu Z-X. Length–weight relationships for three zoarcoid fish species from the coastal waters of the northern Yellow Sea, China. J Appl Ichthyol. 2017;33:1312–1313. https://doi.org/10.1111/jai.13489
学霸图书馆

www.xuebalib.com

本文献由“学霸图书馆-文献云下载”收集自网络，仅供学习交流使用。

学霸图书馆（www.xuebalib.com）是一个“整合众多图书馆数据库资源，提供一站式文献检索和下载服务”的24小时在线不限IP图书馆。

图书馆致力于便利、促进学习与科研，提供最强文献下载服务。

图书馆导航：

图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具